Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 32 additions & 31 deletions examples/pytorch/gpt/utils/gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,38 +403,39 @@ def load_to_torch(file_path: str, is_load: bool):
layer_num = self.layer_num
if self.int8_mode != 0:
for i in range(layer_num):
self.int8_w[i + 0 * layer_num], self.scale[i + 0 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[2 * layer_num + i])
self.int8_w[i + 1 * layer_num], self.scale[i + 1 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[4 * layer_num + i])
self.int8_w[i + 2 * layer_num], self.scale[i + 2 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[8 * layer_num + i])
self.int8_w[i + 3 * layer_num], self.scale[i + 3 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[10 * layer_num + i])

# We clear the original weights since they are no longer needed
if self.int8_mode == 1:
self.w[2 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[4 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[8 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[10 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])

if self.has_adapters:
self.int8_w[i + 4 * layer_num], self.scale[i + 4 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[12 * layer_num + i + self.adapter_offset])
self.int8_w[i + 5 * layer_num], self.scale[i + 5 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[14 * layer_num + i + self.adapter_offset])
self.int8_w[i + 6 * layer_num], self.scale[i + 6 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[16 * layer_num + i + self.adapter_offset])
self.int8_w[i + 7 * layer_num], self.scale[i + 7 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[18 * layer_num + i + self.adapter_offset])

# Similar to above:
if is_load(i):
self.int8_w[i + 0 * layer_num], self.scale[i + 0 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[2 * layer_num + i])
self.int8_w[i + 1 * layer_num], self.scale[i + 1 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[4 * layer_num + i])
self.int8_w[i + 2 * layer_num], self.scale[i + 2 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[8 * layer_num + i])
self.int8_w[i + 3 * layer_num], self.scale[i + 3 *
layer_num] = self.weight_transpose_calibrate_quantize(self.w[10 * layer_num + i])

# We clear the original weights since they are no longer needed
if self.int8_mode == 1:
self.w[12 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[14 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[16 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[18 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[2 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[4 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[8 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[10 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])

if self.has_adapters:
self.int8_w[i + 4 * layer_num], self.scale[i + 4 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[12 * layer_num + i + self.adapter_offset])
self.int8_w[i + 5 * layer_num], self.scale[i + 5 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[14 * layer_num + i + self.adapter_offset])
self.int8_w[i + 6 * layer_num], self.scale[i + 6 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[16 * layer_num + i + self.adapter_offset])
self.int8_w[i + 7 * layer_num], self.scale[i + 7 * layer_num] = self.weight_transpose_calibrate_quantize(
self.w[18 * layer_num + i + self.adapter_offset])

# Similar to above:
if self.int8_mode == 1:
self.w[12 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[14 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[16 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
self.w[18 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type])
return True


Expand Down