-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Description
🐛 Bug
Parent (i.e. non-leaf) modules that have parameters themselves (rather than just their nested submodules having parameters) are not properly handled by several finetuning callback methods. The parent module parameters are ignored by all BaseFineTuning methods that depend upon BaseFineTuning.flatten_modules. I'll add a PR to address the issue shortly but am including a test to replicate the issue below. As a practical example of the issue, I initially encountered this bug when using BaseFinetuning w/ deberta, specifically, the DisentangledSelfAttention parent module
New test to reproduce (tests/callbacks/test_finetuning_callback.py):
def test_parent_module_w_param_model():
"""Test flattening, freezing, and thawing of models which contain parent (non-leaf) modules with parameters
directly themselves rather than exclusively their submodules containing parameters.
"""
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 3)
self.act = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.act(x)
return self.bn(x)
class ConvBlockParam(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 3)
self.act = nn.ReLU()
# add trivial test parameter to conv block to validate parent (non-leaf) module parameter handling
self.parent_param = nn.Parameter(torch.zeros((1), dtype=torch.float))
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.act(x)
return self.bn(x)
model = nn.Sequential(
OrderedDict([
("encoder", nn.Sequential(ConvBlockParam(3, 64), ConvBlock(64, 128))),
("decoder", ConvBlock(128, 10)),
])
)
# There are 10 leaf modules or parent modules w/ parameters in the test model
assert len(BaseFinetuning.flatten_modules(model)) == 10
BaseFinetuning.freeze(model.encoder, train_bn=True)
assert not model.encoder[0].conv.weight.requires_grad # Validate a leaf module parameter is frozen
assert not model.encoder[0].parent_param.requires_grad # Validate the parent module parameter is frozen
assert model.encoder[0].bn.weight.requires_grad
BaseFinetuning.make_trainable(model)
encoder_params = list(BaseFinetuning.filter_params(model.encoder, train_bn=True))
# The 9 parameters of the encoder are:
# conv0.weight, conv0.bias, bn0.weight, bn0.bias, parent_param
# conv1.weight, conv1.bias, bn1.weight, bn1.bias
assert len(encoder_params) == 9Expected behavior
parent_param in the above example model with nested modules should be appropriately handled by BaseFinetuning.[flatten_modules, freeze, make_trainable, filter_params] instead of omitted.
Environment
- CUDA:
- GPU:
- GeForce RTX 2070 SUPER
- GeForce RTX 2070
- available: True
- version: 11.1 - Packages:
- numpy: 1.20.2
- pyTorch_debug: False
- pyTorch_version: 1.8.1
- pytorch-lightning: 1.4.0dev
- tqdm: 4.61.0 - System:
- OS: Linux
- architecture:
- 64bit
- ELF
- processor: x86_64
- python: 3.8.10
- version: updated support for 1.2.0 #80-Ubuntu SMP Mon Apr 12 17:35:00 UTC 2021
Additional context
I've got a fix ready and will be submitting a PR shortly. Thanks for all the great work on this awesome framework!