-
Notifications
You must be signed in to change notification settings - Fork 373
/
Copy pathppo.rs
181 lines (161 loc) · 7.28 KB
/
ppo.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* Proximal Policy Optimization (PPO) model.
Proximal Policy Optimization Algorithms, Schulman et al. 2017
https://arxiv.org/abs/1707.06347
See https://spinningup.openai.com/en/latest/algorithms/ppo.html for a
reference python implementation.
*/
use super::vec_gym_env::VecGymEnv;
use tch::kind::{FLOAT_CPU, INT64_CPU};
use tch::{nn, nn::OptimizerConfig, Kind, Tensor};
const ENV_NAME: &str = "SpaceInvadersNoFrameskip-v4";
const NPROCS: i64 = 8;
const NSTEPS: i64 = 256;
const NSTACK: i64 = 4;
const UPDATES: i64 = 1000000;
const OPTIM_BATCHSIZE: i64 = 64;
const OPTIM_EPOCHS: i64 = 4;
type Model = Box<dyn Fn(&Tensor) -> (Tensor, Tensor)>;
fn model(p: &nn::Path, nact: i64) -> Model {
let stride = |s| nn::ConvConfig { stride: s, ..Default::default() };
let seq = nn::seq()
.add(nn::conv2d(p / "c1", NSTACK, 32, 8, stride(4)))
.add_fn(|xs| xs.relu())
.add(nn::conv2d(p / "c2", 32, 64, 4, stride(2)))
.add_fn(|xs| xs.relu())
.add(nn::conv2d(p / "c3", 64, 64, 3, stride(1)))
.add_fn(|xs| xs.relu().flat_view())
.add(nn::linear(p / "l1", 3136, 512, Default::default()))
.add_fn(|xs| xs.relu());
let critic = nn::linear(p / "cl", 512, 1, Default::default());
let actor = nn::linear(p / "al", 512, nact, Default::default());
let device = p.device();
Box::new(move |xs: &Tensor| {
let xs = xs.to_device(device).apply(&seq);
(xs.apply(&critic), xs.apply(&actor))
})
}
#[derive(Debug)]
struct FrameStack {
data: Tensor,
nprocs: i64,
nstack: i64,
}
impl FrameStack {
fn new(nprocs: i64, nstack: i64) -> FrameStack {
FrameStack { data: Tensor::zeros([nprocs, nstack, 84, 84], FLOAT_CPU), nprocs, nstack }
}
fn update<'a>(&'a mut self, img: &Tensor, masks: Option<&Tensor>) -> &'a Tensor {
if let Some(masks) = masks {
self.data *= masks.view([self.nprocs, 1, 1, 1])
};
let slice = |i| self.data.narrow(1, i, 1);
for i in 1..self.nstack {
slice(i - 1).copy_(&slice(i))
}
slice(self.nstack - 1).copy_(img);
&self.data
}
}
pub fn train() -> cpython::PyResult<()> {
let env = VecGymEnv::new(ENV_NAME, None, NPROCS)?;
println!("action space: {}", env.action_space());
println!("observation space: {:?}", env.observation_space());
let device = tch::Device::cuda_if_available();
let vs = nn::VarStore::new(device);
let model = model(&vs.root(), env.action_space());
let mut opt = nn::Adam::default().build(&vs, 1e-4).unwrap();
let mut sum_rewards = Tensor::zeros([NPROCS], FLOAT_CPU);
let mut total_rewards = 0f64;
let mut total_episodes = 0f64;
let mut frame_stack = FrameStack::new(NPROCS, NSTACK);
let _ = frame_stack.update(&env.reset()?, None);
let s_states = Tensor::zeros([NSTEPS + 1, NPROCS, NSTACK, 84, 84], FLOAT_CPU);
let train_size = NSTEPS * NPROCS;
for update_index in 0..UPDATES {
s_states.get(0).copy_(&s_states.get(-1));
let s_values = Tensor::zeros([NSTEPS, NPROCS], FLOAT_CPU);
let s_rewards = Tensor::zeros([NSTEPS, NPROCS], FLOAT_CPU);
let s_actions = Tensor::zeros([NSTEPS, NPROCS], INT64_CPU);
let s_masks = Tensor::zeros([NSTEPS, NPROCS], FLOAT_CPU);
for s in 0..NSTEPS {
let (critic, actor) = tch::no_grad(|| model(&s_states.get(s)));
let probs = actor.softmax(-1, Kind::Float);
let actions = probs.multinomial(1, true).squeeze_dim(-1);
let step = env.step(Vec::<i64>::try_from(&actions).unwrap())?;
sum_rewards += &step.reward;
total_rewards +=
f64::try_from((&sum_rewards * &step.is_done).sum(Kind::Float)).unwrap();
total_episodes += f64::try_from(step.is_done.sum(Kind::Float)).unwrap();
let masks = Tensor::from(1f32) - step.is_done;
sum_rewards *= &masks;
let obs = frame_stack.update(&step.obs, Some(&masks));
s_actions.get(s).copy_(&actions);
s_values.get(s).copy_(&critic.squeeze_dim(-1));
s_states.get(s + 1).copy_(obs);
s_rewards.get(s).copy_(&step.reward);
s_masks.get(s).copy_(&masks);
}
let states = s_states.narrow(0, 0, NSTEPS).view([train_size, NSTACK, 84, 84]);
let returns = {
let r = Tensor::zeros([NSTEPS + 1, NPROCS], FLOAT_CPU);
let critic = tch::no_grad(|| model(&s_states.get(-1)).0);
r.get(-1).copy_(&critic.view([NPROCS]));
for s in (0..NSTEPS).rev() {
let r_s = s_rewards.get(s) + r.get(s + 1) * s_masks.get(s) * 0.99;
r.get(s).copy_(&r_s);
}
r.narrow(0, 0, NSTEPS).view([train_size, 1])
};
let actions = s_actions.view([train_size]);
for _index in 0..OPTIM_EPOCHS {
let batch_indexes = Tensor::randint(train_size, [OPTIM_BATCHSIZE], INT64_CPU);
let states = states.index_select(0, &batch_indexes);
let actions = actions.index_select(0, &batch_indexes);
let returns = returns.index_select(0, &batch_indexes);
let (critic, actor) = model(&states);
let log_probs = actor.log_softmax(-1, Kind::Float);
let probs = actor.softmax(-1, Kind::Float);
let action_log_probs = {
let index = actions.unsqueeze(-1).to_device(device);
log_probs.gather(-1, &index, false).squeeze_dim(-1)
};
let dist_entropy =
(-log_probs * probs).sum_dim_intlist(-1, false, Kind::Float).mean(Kind::Float);
let advantages = returns.to_device(device) - critic;
let value_loss = (&advantages * &advantages).mean(Kind::Float);
let action_loss = (-advantages.detach() * action_log_probs).mean(Kind::Float);
let loss = value_loss * 0.5 + action_loss - dist_entropy * 0.01;
opt.backward_step_clip(&loss, 0.5);
}
if update_index > 0 && update_index % 25 == 0 {
println!("{} {:.0} {}", update_index, total_episodes, total_rewards / total_episodes);
total_rewards = 0.;
total_episodes = 0.;
}
if update_index > 0 && update_index % 1000 == 0 {
if let Err(err) = vs.save(format!("trpo{update_index}.ot")) {
println!("error while saving {err}")
}
}
}
Ok(())
}
pub fn sample<T: AsRef<std::path::Path>>(weight_file: T) -> cpython::PyResult<()> {
let env = VecGymEnv::new(ENV_NAME, Some("/dev/shm"), 1)?;
println!("action space: {}", env.action_space());
println!("observation space: {:?}", env.observation_space());
let mut vs = nn::VarStore::new(tch::Device::Cpu);
let model = model(&vs.root(), env.action_space());
vs.load(weight_file).unwrap();
let mut frame_stack = FrameStack::new(1, NSTACK);
let mut obs = frame_stack.update(&env.reset()?, None);
for _index in 0..5000 {
let (_critic, actor) = tch::no_grad(|| model(obs));
let probs = actor.softmax(-1, Kind::Float);
let actions = probs.multinomial(1, true).squeeze_dim(-1);
let step = env.step(Vec::<i64>::try_from(&actions).unwrap())?;
let masks = Tensor::from(1f32) - step.is_done;
obs = frame_stack.update(&step.obs, Some(&masks));
}
Ok(())
}