|
85 | 85 |
|
86 | 86 | =#
|
87 | 87 |
|
88 |
| -const a0 = 7.72156649015328655494e-02 #= 0x3FB3C467, 0xE37DB0C8 =# |
89 |
| -const a1 = 3.22467033424113591611e-01 #= 0x3FD4A34C, 0xC4A60FAD =# |
90 |
| -const a2 = 6.73523010531292681824e-02 #= 0x3FB13E00, 0x1A5562A7 =# |
91 |
| -const a3 = 2.05808084325167332806e-02 #= 0x3F951322, 0xAC92547B =# |
92 |
| -const a4 = 7.38555086081402883957e-03 #= 0x3F7E404F, 0xB68FEFE8 =# |
93 |
| -const a5 = 2.89051383673415629091e-03 #= 0x3F67ADD8, 0xCCB7926B =# |
94 |
| -const a6 = 1.19270763183362067845e-03 #= 0x3F538A94, 0x116F3F5D =# |
95 |
| -const a7 = 5.10069792153511336608e-04 #= 0x3F40B6C6, 0x89B99C00 =# |
96 |
| -const a8 = 2.20862790713908385557e-04 #= 0x3F2CF2EC, 0xED10E54D =# |
97 |
| -const a9 = 1.08011567247583939954e-04 #= 0x3F1C5088, 0x987DFB07 =# |
98 |
| -const a10 = 2.52144565451257326939e-05 #= 0x3EFA7074, 0x428CFA52 =# |
99 |
| -const a11 = 4.48640949618915160150e-05 #= 0x3F07858E, 0x90A45837 =# |
100 |
| -const tc = 1.46163214496836224576e+00 #= 0x3FF762D8, 0x6356BE3F =# |
101 |
| -const tf = -1.21486290535849611461e-01 #= 0xBFBF19B9, 0xBCC38A42 =# |
102 |
| -#= tt = -(tail of tf) =# |
103 |
| -const tt = -3.63867699703950536541e-18 #= 0xBC50C7CA, 0xA48A971F =# |
104 |
| -const t0 = 4.83836122723810047042e-01 #= 0x3FDEF72B, 0xC8EE38A2 =# |
105 |
| -const t1 = -1.47587722994593911752e-01 #= 0xBFC2E427, 0x8DC6C509 =# |
106 |
| -const t2 = 6.46249402391333854778e-02 #= 0x3FB08B42, 0x94D5419B =# |
107 |
| -const t3 = -3.27885410759859649565e-02 #= 0xBFA0C9A8, 0xDF35B713 =# |
108 |
| -const t4 = 1.79706750811820387126e-02 #= 0x3F9266E7, 0x970AF9EC =# |
109 |
| -const t5 = -1.03142241298341437450e-02 #= 0xBF851F9F, 0xBA91EC6A =# |
110 |
| -const t6 = 6.10053870246291332635e-03 #= 0x3F78FCE0, 0xE370E344 =# |
111 |
| -const t7 = -3.68452016781138256760e-03 #= 0xBF6E2EFF, 0xB3E914D7 =# |
112 |
| -const t8 = 2.25964780900612472250e-03 #= 0x3F6282D3, 0x2E15C915 =# |
113 |
| -const t9 = -1.40346469989232843813e-03 #= 0xBF56FE8E, 0xBF2D1AF1 =# |
114 |
| -const t10 = 8.81081882437654011382e-04 #= 0x3F4CDF0C, 0xEF61A8E9 =# |
115 |
| -const t11 = -5.38595305356740546715e-04 #= 0xBF41A610, 0x9C73E0EC =# |
116 |
| -const t12 = 3.15632070903625950361e-04 #= 0x3F34AF6D, 0x6C0EBBF7 =# |
117 |
| -const t13 = -3.12754168375120860518e-04 #= 0xBF347F24, 0xECC38C38 =# |
118 |
| -const t14 = 3.35529192635519073543e-04 #= 0x3F35FD3E, 0xE8C2D3F4 =# |
119 |
| -const u0 = -7.72156649015328655494e-02 #= 0xBFB3C467, 0xE37DB0C8 =# |
120 |
| -const u1 = 6.32827064025093366517e-01 #= 0x3FE4401E, 0x8B005DFF =# |
121 |
| -const u2 = 1.45492250137234768737e+00 #= 0x3FF7475C, 0xD119BD6F =# |
122 |
| -const u3 = 9.77717527963372745603e-01 #= 0x3FEF4976, 0x44EA8450 =# |
123 |
| -const u4 = 2.28963728064692451092e-01 #= 0x3FCD4EAE, 0xF6010924 =# |
124 |
| -const u5 = 1.33810918536787660377e-02 #= 0x3F8B678B, 0xBF2BAB09 =# |
125 |
| -const v1 = 2.45597793713041134822e+00 #= 0x4003A5D7, 0xC2BD619C =# |
126 |
| -const v2 = 2.12848976379893395361e+00 #= 0x40010725, 0xA42B18F5 =# |
127 |
| -const v3 = 7.69285150456672783825e-01 #= 0x3FE89DFB, 0xE45050AF =# |
128 |
| -const v4 = 1.04222645593369134254e-01 #= 0x3FBAAE55, 0xD6537C88 =# |
129 |
| -const v5 = 3.21709242282423911810e-03 #= 0x3F6A5ABB, 0x57D0CF61 =# |
130 |
| -const s0 = -7.72156649015328655494e-02 #= 0xBFB3C467, 0xE37DB0C8 =# |
131 |
| -const s1 = 2.14982415960608852501e-01 #= 0x3FCB848B, 0x36E20878 =# |
132 |
| -const s2 = 3.25778796408930981787e-01 #= 0x3FD4D98F, 0x4F139F59 =# |
133 |
| -const s3 = 1.46350472652464452805e-01 #= 0x3FC2BB9C, 0xBEE5F2F7 =# |
134 |
| -const s4 = 2.66422703033638609560e-02 #= 0x3F9B481C, 0x7E939961 =# |
135 |
| -const s5 = 1.84028451407337715652e-03 #= 0x3F5E26B6, 0x7368F239 =# |
136 |
| -const s6 = 3.19475326584100867617e-05 #= 0x3F00BFEC, 0xDD17E945 =# |
137 |
| -const r1 = 1.39200533467621045958e+00 #= 0x3FF645A7, 0x62C4AB74 =# |
138 |
| -const r2 = 7.21935547567138069525e-01 #= 0x3FE71A18, 0x93D3DCDC =# |
139 |
| -const r3 = 1.71933865632803078993e-01 #= 0x3FC601ED, 0xCCFBDF27 =# |
140 |
| -const r4 = 1.86459191715652901344e-02 #= 0x3F9317EA, 0x742ED475 =# |
141 |
| -const r5 = 7.77942496381893596434e-04 #= 0x3F497DDA, 0xCA41A95B =# |
142 |
| -const r6 = 7.32668430744625636189e-06 #= 0x3EDEBAF7, 0xA5B38140 =# |
143 |
| -const w0 = 4.18938533204672725052e-01 #= 0x3FDACFE3, 0x90C97D69 =# |
144 |
| -const w1 = 8.33333333333329678849e-02 #= 0x3FB55555, 0x5555553B =# |
145 |
| -const w2 = -2.77777777728775536470e-03 #= 0xBF66C16C, 0x16B02E5C =# |
146 |
| -const w3 = 7.93650558643019558500e-04 #= 0x3F4A019F, 0x98CF38B6 =# |
147 |
| -const w4 = -5.95187557450339963135e-04 #= 0xBF4380CB, 0x8C0FE741 =# |
148 |
| -const w5 = 8.36339918996282139126e-04 #= 0x3F4B67BA, 0x4CDAD5D1 =# |
149 |
| -const w6 = -1.63092934096575273989e-03 #= 0xBF5AB89D, 0x0B9E43E4 =# |
150 |
| - |
151 |
| -# Matches OpenLibm behavior exactly, including return of sign |
| 88 | +# Matches OpenLibm behavior (except commented out |x|≥2^52 early exit) |
152 | 89 | function _lgamma_r(x::Float64)
|
153 | 90 | u = reinterpret(UInt64, x)
|
154 |
| - hx = (u >>> 32) % Int32 |
| 91 | + hx = u >>> 32 % Int32 |
155 | 92 | lx = u % Int32
|
156 | 93 |
|
157 | 94 | #= purge off +-inf, NaN, +-0, tiny and negative arguments =#
|
158 | 95 | signgamp = Int32(1)
|
159 |
| - ix = signed(hx & 0x7fffffff) |
160 |
| - ix ≥ 0x7ff00000 && return x * x, signgamp |
161 |
| - ix | lx == 0 && return 1.0 / 0.0, signgamp |
| 96 | + ix = hx & 0x7fffffff |
| 97 | + ix ≥ 0x7ff00000 && return typemax(x), signgamp |
| 98 | + ix | lx == 0x00000000 && return typemax(x), signgamp |
162 | 99 | if ix < 0x3b900000 #= |x|<2**-70, return -log(|x|) =#
|
163 |
| - if hx < 0 |
| 100 | + if hx < 0 # x < 0 |
164 | 101 | signgamp = Int32(-1)
|
165 | 102 | return -log(-x), signgamp
|
166 | 103 | else
|
167 | 104 | return -log(x), signgamp
|
168 | 105 | end
|
169 | 106 | end
|
170 | 107 | if hx < 0
|
171 |
| - ix ≥ 0x43300000 && return 1.0 / 0.0, signgamp #= |x|>=2**52, must be -integer =# |
| 108 | + # ix ≥ 0x43300000 && return typemax(x), signgamp #= |x|≥2^52, must be -integer =# |
172 | 109 | t = sinpi(x)
|
173 |
| - t == 0.0 && return 1.0 / 0.0, signgamp #= -integer =# |
| 110 | + iszero(t) && return typemax(x), signgamp #= -integer =# |
174 | 111 | nadj = log(π / abs(t * x))
|
175 | 112 | if t < 0.0; signgamp = Int32(-1); end
|
176 | 113 | x = -x
|
177 | 114 | end
|
178 |
| - |
179 |
| - #= purge off 1 and 2 =# |
180 |
| - if ((ix - 0x3ff00000) | lx) == 0 || ((ix - 0x40000000) | lx) == 0 |
181 |
| - r = 0.0 |
182 |
| - #= for x < 2.0 =# |
183 |
| - elseif ix < 0x40000000 |
184 |
| - if ix ≤ 0x3feccccc #= lgamma(x) = lgamma(x+1)-log(x) =# |
185 |
| - r = -log(x) |
186 |
| - if ix ≥ 0x3FE76944 |
187 |
| - y = 1.0 - x |
188 |
| - i = Int8(0) |
189 |
| - elseif ix ≥ 0x3FCDA661 |
190 |
| - y = x - (tc - 1.0) |
191 |
| - i = Int8(1) |
192 |
| - else |
193 |
| - y = x |
194 |
| - i = Int8(2) |
195 |
| - end |
196 |
| - else |
| 115 | + if ix ≤ 0x40000000 #= for x < 2.0 =# |
| 116 | + ipart = round(x, RoundToZero) |
| 117 | + fpart = x - ipart |
| 118 | + if iszero(fpart) |
| 119 | + return 0.0, signgamp |
| 120 | + elseif isone(ipart) |
197 | 121 | r = 0.0
|
198 |
| - if ix ≥ 0x3FFBB4C3 #= [1.7316,2] =# |
199 |
| - y = 2.0 - x |
200 |
| - i = Int8(0) |
201 |
| - elseif ix ≥ 0x3FF3B4C4 #= [1.23,1.73] =# |
202 |
| - y = x - tc |
203 |
| - i = Int8(1) |
204 |
| - else |
205 |
| - y = x - 1.0 |
206 |
| - i = Int8(2) |
207 |
| - end |
208 |
| - end |
209 |
| - if i == Int8(0) |
210 |
| - z = y*y; |
211 |
| - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
212 |
| - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
213 |
| - p = y*p1+p2; |
214 |
| - r += (p-0.5*y); |
215 |
| - elseif i == Int8(1) |
216 |
| - z = y*y; |
217 |
| - w = z*y; |
218 |
| - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); #= parallel comp =# |
219 |
| - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
220 |
| - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
221 |
| - p = z*p1-(tt-w*(p2+y*p3)); |
222 |
| - r += (tf + p) |
223 |
| - elseif i == Int8(2) |
224 |
| - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
225 |
| - p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
226 |
| - r += (-0.5*y + p1/p2); |
227 |
| - end |
228 |
| - elseif ix < 0x40200000 #= x < 8.0 =# |
229 |
| - i = Base.unsafe_trunc(Int8, x) |
230 |
| - y = x - float(i) |
231 |
| - # If performed here, performance is 2x worse; hence, move it below. |
232 |
| - # p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
233 |
| - # q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
234 |
| - # r = 0.5*y+p/q; |
235 |
| - z = 1.0; #= lgamma(1+s) = log(s) + lgamma(s) =# |
236 |
| - if i == Int8(7) |
237 |
| - z *= (y + 6.0) |
238 |
| - @goto case6 |
239 |
| - elseif i == Int8(6) |
240 |
| - @label case6 |
241 |
| - z *= (y + 5.0) |
242 |
| - @goto case5 |
243 |
| - elseif i == Int8(5) |
244 |
| - @label case5 |
245 |
| - z *= (y + 4.0) |
246 |
| - @goto case4 |
247 |
| - elseif i == Int8(4) |
248 |
| - @label case4 |
249 |
| - z *= (y + 3.0) |
250 |
| - @goto case3 |
251 |
| - elseif i == Int8(3) |
252 |
| - @label case3 |
253 |
| - z *= (y + 2.0) |
254 |
| - end |
255 |
| - # r += log(z) |
256 |
| - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
257 |
| - q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
258 |
| - r = log(z) + 0.5*y+p/q; |
259 |
| - #= 8.0 ≤ x < 2^58 =# |
260 |
| - elseif ix < 0x43900000 |
261 |
| - t = log(x) |
262 |
| - z = 1.0 / x |
263 |
| - y = z * z |
264 |
| - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
265 |
| - r = (x-0.5)*(t-1.0)+w; |
266 |
| - else |
267 |
| - #= 2^58 ≤ x ≤ Inf =# |
268 |
| - r = x * (log(x) - 1.0) |
269 |
| - end |
270 |
| - if hx < 0 |
271 |
| - r = nadj - r |
272 |
| - end |
273 |
| - return r, signgamp |
274 |
| -end |
275 |
| - |
276 |
| -# Deviates from OpenLibm: throws instead of returning negative sign; approximately 25% faster |
277 |
| -# when sign is not needed in subsequent computations. |
278 |
| -function _loggamma_r(x::Float64) |
279 |
| - u = reinterpret(UInt64, x) |
280 |
| - hx = (u >>> 32) % Int32 |
281 |
| - lx = u % Int32 |
282 |
| - |
283 |
| - #= purge off +-inf, NaN, +-0, tiny and negative arguments =# |
284 |
| - ix = signed(hx & 0x7fffffff) |
285 |
| - ix ≥ 0x7ff00000 && return x * x |
286 |
| - ix | lx == 0 && return 1.0 / 0.0 |
287 |
| - if ix < 0x3b900000 #= |x|<2**-70, return -log(|x|) =# |
288 |
| - if hx < 0 |
289 |
| - # return -log(-x) |
290 |
| - throw(DomainError(x, "`gamma(x)` must be non-negative")) |
| 122 | + c = 1.0 |
291 | 123 | else
|
292 |
| - return -log(x) |
293 |
| - end |
294 |
| - end |
295 |
| - if hx < 0 |
296 |
| - ix ≥ 0x43300000 && return 1.0 / 0.0 #= |x|>=2**52, must be -integer =# |
297 |
| - t = sinpi(x) |
298 |
| - t == 0.0 && return 1.0 / 0.0 #= -integer =# |
299 |
| - nadj = log(π / abs(t * x)) |
300 |
| - t < 0.0 && throw(DomainError(x, "`gamma(x)` must be non-negative")) |
301 |
| - x = -x |
302 |
| - end |
303 |
| - |
304 |
| - #= purge off 1 and 2 =# |
305 |
| - if ((ix - 0x3ff00000) | lx) == 0 || ((ix - 0x40000000) | lx) == 0 |
306 |
| - r = 0.0 |
307 |
| - #= for x < 2.0 =# |
308 |
| - elseif ix < 0x40000000 |
309 |
| - if ix ≤ 0x3feccccc #= lgamma(x) = lgamma(x+1)-log(x) =# |
310 | 124 | r = -log(x)
|
311 |
| - if ix ≥ 0x3FE76944 |
312 |
| - y = 1.0 - x |
313 |
| - i = Int8(0) |
314 |
| - elseif ix ≥ 0x3FCDA661 |
315 |
| - y = x - (tc - 1.0) |
316 |
| - i = Int8(1) |
317 |
| - else |
318 |
| - y = x |
319 |
| - i = Int8(2) |
320 |
| - end |
321 |
| - else |
322 |
| - r = 0.0 |
323 |
| - if ix ≥ 0x3FFBB4C3 #= [1.7316,2] =# |
324 |
| - y = 2.0 - x |
325 |
| - i = Int8(0) |
326 |
| - elseif ix ≥ 0x3FF3B4C4 #= [1.23,1.73] =# |
327 |
| - y = x - tc |
328 |
| - i = Int8(1) |
329 |
| - else |
330 |
| - y = x - 1.0 |
331 |
| - i = Int8(2) |
332 |
| - end |
| 125 | + c = 0.0 |
333 | 126 | end
|
334 |
| - if i == Int8(0) |
335 |
| - z = y*y; |
336 |
| - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
337 |
| - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
338 |
| - p = y*p1+p2; |
339 |
| - r += (p-0.5*y); |
340 |
| - elseif i == Int8(1) |
341 |
| - z = y*y; |
342 |
| - w = z*y; |
343 |
| - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); #= parallel comp =# |
344 |
| - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
345 |
| - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
346 |
| - p = z*p1-(tt-w*(p2+y*p3)); |
347 |
| - r += (tf + p) |
348 |
| - elseif i == Int8(2) |
349 |
| - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
350 |
| - p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
351 |
| - r += (-0.5*y + p1/p2); |
| 127 | + if fpart ≥ 0.7315998077392578 |
| 128 | + y = 1.0 + c - x |
| 129 | + z = y * y |
| 130 | + p1 = evalpoly(z, (7.72156649015328655494e-02, 6.73523010531292681824e-02, 7.38555086081402883957e-03, 1.19270763183362067845e-03, 2.20862790713908385557e-04, 2.52144565451257326939e-05)) |
| 131 | + p2 = z * evalpoly(z, (3.22467033424113591611e-01, 2.05808084325167332806e-02, 2.89051383673415629091e-03, 5.10069792153511336608e-04, 1.08011567247583939954e-04, 4.48640949618915160150e-05)) |
| 132 | + p = muladd(p1, y, p2) |
| 133 | + r += muladd(y, -0.5, p) |
| 134 | + elseif fpart ≥ 0.2316399812698364 # or, the lb? 0.2316322326660156 |
| 135 | + y = x - 0.46163214496836225 - c |
| 136 | + z = y * y |
| 137 | + w = z * y |
| 138 | + p1 = evalpoly(w, (4.83836122723810047042e-01, -3.27885410759859649565e-02, 6.10053870246291332635e-03, -1.40346469989232843813e-03, 3.15632070903625950361e-04)) |
| 139 | + p2 = evalpoly(w, (-1.47587722994593911752e-01, 1.79706750811820387126e-02, -3.68452016781138256760e-03, 8.81081882437654011382e-04, -3.12754168375120860518e-04)) |
| 140 | + p3 = evalpoly(w, (6.46249402391333854778e-02, -1.03142241298341437450e-02, 2.25964780900612472250e-03, -5.38595305356740546715e-04, 3.35529192635519073543e-04)) |
| 141 | + p = muladd(z, p1, -muladd(w, -muladd(p3, y, p2), -3.63867699703950536541e-18)) |
| 142 | + r += p - 1.21486290535849611461e-1 |
| 143 | + else |
| 144 | + y = x - c |
| 145 | + p1 = y * evalpoly(y, (-7.72156649015328655494e-02, 6.32827064025093366517e-01, 1.45492250137234768737, 9.77717527963372745603e-01, 2.28963728064692451092e-01, 1.33810918536787660377e-02)) |
| 146 | + p2 = evalpoly(y, (1.0, 2.45597793713041134822, 2.12848976379893395361, 7.69285150456672783825e-01, 1.04222645593369134254e-01, 3.21709242282423911810e-03)) |
| 147 | + r += muladd(y, -0.5, p1 / p2) |
352 | 148 | end
|
353 |
| - elseif ix < 0x40200000 #= x < 8.0 =# |
354 |
| - i = Base.unsafe_trunc(Int8, x) |
355 |
| - y = x - float(i) |
356 |
| - # If performed here, performance is 2x worse; hence, move it below. |
357 |
| - # p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
358 |
| - # q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
359 |
| - # r = 0.5*y+p/q; |
360 |
| - z = 1.0; #= lgamma(1+s) = log(s) + lgamma(s) =# |
361 |
| - if i == Int8(7) |
362 |
| - z *= (y + 6.0) |
363 |
| - @goto case6 |
364 |
| - elseif i == Int8(6) |
365 |
| - @label case6 |
366 |
| - z *= (y + 5.0) |
367 |
| - @goto case5 |
368 |
| - elseif i == Int8(5) |
369 |
| - @label case5 |
370 |
| - z *= (y + 4.0) |
371 |
| - @goto case4 |
372 |
| - elseif i == Int8(4) |
373 |
| - @label case4 |
374 |
| - z *= (y + 3.0) |
375 |
| - @goto case3 |
376 |
| - elseif i == Int8(3) |
377 |
| - @label case3 |
378 |
| - z *= (y + 2.0) |
| 149 | + elseif ix < 0x40200000 #= x < 8.0 =# |
| 150 | + i = round(x, RoundToZero) |
| 151 | + y = x - i |
| 152 | + z = 1.0 |
| 153 | + p = 0.0 |
| 154 | + u = x |
| 155 | + while u ≥ 3.0 |
| 156 | + p -= 1.0 |
| 157 | + u = x + p |
| 158 | + z *= u |
379 | 159 | end
|
380 |
| - # r += log(z) |
381 |
| - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
382 |
| - q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
383 |
| - r = log(z) + 0.5*y+p/q; |
384 |
| - #= 8.0 ≤ x < 2^58 =# |
385 |
| - elseif ix < 0x43900000 |
386 |
| - t = log(x) |
| 160 | + p = y * evalpoly(y, (-7.72156649015328655494e-2, 2.14982415960608852501e-1, 3.25778796408930981787e-1, 1.46350472652464452805e-1, 2.66422703033638609560e-2, 1.84028451407337715652e-3, 3.19475326584100867617e-5)) |
| 161 | + q = evalpoly(y, (1.0, 1.39200533467621045958, 7.21935547567138069525e-1, 1.71933865632803078993e-1, 1.86459191715652901344e-2, 7.77942496381893596434e-4, 7.32668430744625636189e-6)) |
| 162 | + r = log(z) + muladd(0.5, y, p / q) |
| 163 | + elseif ix < 0x43900000 #= 8.0 ≤ x < 2^58 =# |
387 | 164 | z = 1.0 / x
|
388 | 165 | y = z * z
|
389 |
| - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
390 |
| - r = (x-0.5)*(t-1.0)+w; |
391 |
| - else |
392 |
| - #= 2^58 ≤ x ≤ Inf =# |
393 |
| - r = x * (log(x) - 1.0) |
| 166 | + w = muladd(z, evalpoly(y, (8.33333333333329678849e-2, -2.77777777728775536470e-3, 7.93650558643019558500e-4, -5.95187557450339963135e-4, 8.36339918996282139126e-4, -1.63092934096575273989e-3)), 4.18938533204672725052e-1) |
| 167 | + r = muladd(x - 0.5, log(x) - 1.0, w) |
| 168 | + else #= 2^58 ≤ x ≤ Inf =# |
| 169 | + r = muladd(x, log(x), -x) |
394 | 170 | end
|
395 | 171 | if hx < 0
|
396 | 172 | r = nadj - r
|
397 | 173 | end
|
398 |
| - return r |
| 174 | + return r, signgamp |
399 | 175 | end
|
0 commit comments