@@ -34,11 +34,13 @@ class TestCanCast(unittest.TestCase):
3434 @testing .for_all_dtypes_combination (names = ("from_dtype" , "to_dtype" ))
3535 @testing .numpy_cupy_equal ()
3636 def test_can_cast (self , xp , from_dtype , to_dtype ):
37- if self .obj_type == "scalar" :
37+ if (
38+ self .obj_type == "scalar"
39+ and numpy .lib .NumpyVersion (numpy .__version__ ) < "2.0.0"
40+ ):
3841 pytest .skip ("to be aligned with NEP-50" )
3942
4043 from_obj = _generate_type_routines_input (xp , from_dtype , self .obj_type )
41-
4244 ret = xp .can_cast (from_obj , to_dtype )
4345 assert isinstance (ret , bool )
4446 return ret
@@ -92,37 +94,40 @@ class TestResultType(unittest.TestCase):
9294 @testing .for_all_dtypes_combination (names = ("dtype1" , "dtype2" ))
9395 @testing .numpy_cupy_equal ()
9496 def test_result_type (self , xp , dtype1 , dtype2 ):
95- if "scalar" in {self .obj_type1 , self .obj_type2 }:
97+ if (
98+ "scalar" in {self .obj_type1 , self .obj_type2 }
99+ and numpy .lib .NumpyVersion (numpy .__version__ ) < "2.0.0"
100+ ):
96101 pytest .skip ("to be aligned with NEP-50" )
97102
98103 input1 = _generate_type_routines_input (xp , dtype1 , self .obj_type1 )
99-
100104 input2 = _generate_type_routines_input (xp , dtype2 , self .obj_type2 )
101105
102- flag1 = isinstance (input1 , (numpy .ndarray , cupy .ndarray ))
103- flag2 = isinstance (input2 , (numpy .ndarray , cupy .ndarray ))
104- dt1 = cupy .dtype (input1 ) if not flag1 else None
105- dt2 = cupy .dtype (input2 ) if not flag2 else None
106- # dpnp takes into account device capabilities only if one of the
107- # inputs is an array, for such a case, if the other dtype is not
108- # supported by device, dpnp raise ValueError. So, we skip the test.
109- if flag1 or flag2 :
110- if (
111- dt1 in [cupy .float64 , cupy .complex128 ]
112- or dt2 in [cupy .float64 , cupy .complex128 ]
113- ) and not has_support_aspect64 ():
114- pytest .skip ("No fp64 support by device." )
106+ # dpnp.result_type takes into account device capabilities, when one of
107+ # the inputs is an array. If dtype is `float32` and the object is
108+ # primitive, the final dtype is `float` which needs a device with
109+ # double precision support. So we have to skip the test for such a case
110+ # on a device that does not support fp64
111+ flag1 = self .obj_type1 == "array" or self .obj_type2 == "array"
112+ flag2 = (self .obj_type1 == "primitive" and input1 == float ) or (
113+ self .obj_type2 == "primitive" and input2 == float
114+ )
115+ if flag1 and flag2 and not has_support_aspect64 ():
116+ pytest .skip ("No fp64 support by device." )
115117
116118 ret = xp .result_type (input1 , input2 )
117119
118- # dpnp takes into account device capabilities if one of the inputs
119- # is an array, for such a case, we have to modify the results for
120- # NumPy to align it with device capabilities.
121- if (flag1 or flag2 ) and xp == numpy and not has_support_aspect64 ():
122- ret = numpy .dtype (numpy .float32 ) if ret == numpy .float64 else ret
123- ret = (
124- numpy .dtype (numpy .complex64 ) if ret == numpy .complex128 else ret
125- )
120+ # dpnp.result_type takes into account device capabilities, when one of the inputs
121+ # is an array.
122+ # So, we have to modify the results for NumPy to align it with
123+ # device capabilities.
124+ flag1 = isinstance (input1 , numpy .ndarray )
125+ flag2 = isinstance (input2 , numpy .ndarray )
126+ if (flag1 or flag2 ) and not has_support_aspect64 ():
127+ if ret == numpy .float64 :
128+ ret = numpy .dtype (numpy .float32 )
129+ elif ret == numpy .complex128 :
130+ ret = numpy .dtype (numpy .complex64 )
126131
127132 assert isinstance (ret , numpy .dtype )
128133 return ret
0 commit comments