|
| 1 | +# Data Parallel Control (dpctl) |
| 2 | +# |
| 3 | +# Copyright 2020-2023 Intel Corporation |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +from numpy.core.numeric import normalize_axis_tuple |
| 18 | + |
| 19 | +import dpctl |
| 20 | +import dpctl.tensor as dpt |
| 21 | +import dpctl.tensor._tensor_elementwise_impl as tei |
| 22 | +import dpctl.tensor._tensor_impl as ti |
| 23 | +import dpctl.tensor._tensor_reductions_impl as tri |
| 24 | + |
| 25 | +from ._reduction import _default_reduction_dtype |
| 26 | + |
| 27 | + |
| 28 | +def _var_impl(x, axis, correction, keepdims): |
| 29 | + nd = x.ndim |
| 30 | + if axis is None: |
| 31 | + axis = tuple(range(nd)) |
| 32 | + if not isinstance(axis, (tuple, list)): |
| 33 | + axis = (axis,) |
| 34 | + axis = normalize_axis_tuple(axis, nd, "axis") |
| 35 | + perm = [] |
| 36 | + nelems = 1 |
| 37 | + for i in range(nd): |
| 38 | + if i not in axis: |
| 39 | + perm.append(i) |
| 40 | + else: |
| 41 | + nelems *= x.shape[i] |
| 42 | + red_nd = len(axis) |
| 43 | + perm = perm + list(axis) |
| 44 | + q = x.sycl_queue |
| 45 | + inp_dt = x.dtype |
| 46 | + res_dt = ( |
| 47 | + inp_dt |
| 48 | + if inp_dt.kind == "f" |
| 49 | + else dpt.dtype(ti.default_device_fp_type(q)) |
| 50 | + ) |
| 51 | + res_usm_type = x.usm_type |
| 52 | + |
| 53 | + deps = [] |
| 54 | + host_tasks_list = [] |
| 55 | + if inp_dt != res_dt: |
| 56 | + buf = dpt.empty_like(x, dtype=res_dt) |
| 57 | + ht_e_buf, c_e1 = ti._copy_usm_ndarray_into_usm_ndarray( |
| 58 | + src=x, dst=buf, sycl_queue=q |
| 59 | + ) |
| 60 | + deps.append(c_e1) |
| 61 | + host_tasks_list.append(ht_e_buf) |
| 62 | + else: |
| 63 | + buf = x |
| 64 | + # calculate mean |
| 65 | + buf2 = dpt.permute_dims(buf, perm) |
| 66 | + res_shape = buf2.shape[: nd - red_nd] |
| 67 | + # use keepdims=True path for later broadcasting |
| 68 | + if red_nd == 0: |
| 69 | + mean_ary = dpt.empty_like(buf) |
| 70 | + ht_e1, c_e2 = ti._copy_usm_ndarray_into_usm_ndarray( |
| 71 | + src=buf, dst=mean_ary, sycl_queue=q |
| 72 | + ) |
| 73 | + deps.append(c_e2) |
| 74 | + host_tasks_list.append(ht_e1) |
| 75 | + else: |
| 76 | + mean_ary = dpt.empty( |
| 77 | + res_shape, |
| 78 | + dtype=res_dt, |
| 79 | + usm_type=res_usm_type, |
| 80 | + sycl_queue=q, |
| 81 | + ) |
| 82 | + ht_e1, r_e1 = tri._sum_over_axis( |
| 83 | + src=buf2, |
| 84 | + trailing_dims_to_reduce=red_nd, |
| 85 | + dst=mean_ary, |
| 86 | + sycl_queue=q, |
| 87 | + depends=deps, |
| 88 | + ) |
| 89 | + host_tasks_list.append(ht_e1) |
| 90 | + deps.append(r_e1) |
| 91 | + |
| 92 | + mean_ary_shape = res_shape + (1,) * red_nd |
| 93 | + inv_perm = sorted(range(nd), key=lambda d: perm[d]) |
| 94 | + mean_ary = dpt.permute_dims( |
| 95 | + dpt.reshape(mean_ary, mean_ary_shape), inv_perm |
| 96 | + ) |
| 97 | + # divide in-place to get mean |
| 98 | + mean_ary_shape = mean_ary.shape |
| 99 | + nelems_ary = dpt.asarray( |
| 100 | + nelems, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q |
| 101 | + ) |
| 102 | + if nelems_ary.shape != mean_ary_shape: |
| 103 | + nelems_ary = dpt.broadcast_to(nelems_ary, mean_ary_shape) |
| 104 | + ht_e2, d_e1 = tei._divide_inplace( |
| 105 | + lhs=mean_ary, rhs=nelems_ary, sycl_queue=q, depends=deps |
| 106 | + ) |
| 107 | + host_tasks_list.append(ht_e2) |
| 108 | + # subtract mean from original array to get deviations |
| 109 | + dev_ary = dpt.empty_like(buf) |
| 110 | + if mean_ary_shape != buf.shape: |
| 111 | + mean_ary = dpt.broadcast_to(mean_ary, buf.shape) |
| 112 | + ht_e4, su_e = tei._subtract( |
| 113 | + src1=buf, src2=mean_ary, dst=dev_ary, sycl_queue=q, depends=[d_e1] |
| 114 | + ) |
| 115 | + host_tasks_list.append(ht_e4) |
| 116 | + # square deviations |
| 117 | + ht_e5, sq_e = tei._square( |
| 118 | + src=dev_ary, dst=dev_ary, sycl_queue=q, depends=[su_e] |
| 119 | + ) |
| 120 | + host_tasks_list.append(ht_e5) |
| 121 | + deps2 = [] |
| 122 | + # take sum of squared deviations |
| 123 | + dev_ary2 = dpt.permute_dims(dev_ary, perm) |
| 124 | + if red_nd == 0: |
| 125 | + res = dev_ary |
| 126 | + deps2.append(sq_e) |
| 127 | + else: |
| 128 | + res = dpt.empty( |
| 129 | + res_shape, |
| 130 | + dtype=res_dt, |
| 131 | + usm_type=res_usm_type, |
| 132 | + sycl_queue=q, |
| 133 | + ) |
| 134 | + ht_e6, r_e2 = tri._sum_over_axis( |
| 135 | + src=dev_ary2, |
| 136 | + trailing_dims_to_reduce=red_nd, |
| 137 | + dst=res, |
| 138 | + sycl_queue=q, |
| 139 | + depends=[sq_e], |
| 140 | + ) |
| 141 | + host_tasks_list.append(ht_e6) |
| 142 | + deps2.append(r_e2) |
| 143 | + |
| 144 | + if keepdims: |
| 145 | + res_shape = res_shape + (1,) * red_nd |
| 146 | + inv_perm = sorted(range(nd), key=lambda d: perm[d]) |
| 147 | + res = dpt.permute_dims(dpt.reshape(res, res_shape), inv_perm) |
| 148 | + res_shape = res.shape |
| 149 | + # when nelems - correction <= 0, yield nans |
| 150 | + div = max(nelems - correction, 0) |
| 151 | + if not div: |
| 152 | + div = dpt.nan |
| 153 | + div_ary = dpt.asarray(div, res_dt, usm_type=res_usm_type, sycl_queue=q) |
| 154 | + # divide in-place again |
| 155 | + if div_ary.shape != res_shape: |
| 156 | + div_ary = dpt.broadcast_to(div_ary, res.shape) |
| 157 | + ht_e7, d_e2 = tei._divide_inplace( |
| 158 | + lhs=res, rhs=div_ary, sycl_queue=q, depends=deps2 |
| 159 | + ) |
| 160 | + host_tasks_list.append(ht_e7) |
| 161 | + return res, [d_e2], host_tasks_list |
| 162 | + |
| 163 | + |
| 164 | +def mean(x, axis=None, keepdims=False): |
| 165 | + if not isinstance(x, dpt.usm_ndarray): |
| 166 | + raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(x)}") |
| 167 | + nd = x.ndim |
| 168 | + if axis is None: |
| 169 | + axis = tuple(range(nd)) |
| 170 | + if not isinstance(axis, (tuple, list)): |
| 171 | + axis = (axis,) |
| 172 | + axis = normalize_axis_tuple(axis, nd, "axis") |
| 173 | + perm = [] |
| 174 | + nelems = 1 |
| 175 | + for i in range(nd): |
| 176 | + if i not in axis: |
| 177 | + perm.append(i) |
| 178 | + else: |
| 179 | + nelems *= x.shape[i] |
| 180 | + sum_nd = len(axis) |
| 181 | + perm = perm + list(axis) |
| 182 | + arr2 = dpt.permute_dims(x, perm) |
| 183 | + res_shape = arr2.shape[: nd - sum_nd] |
| 184 | + q = x.sycl_queue |
| 185 | + inp_dt = x.dtype |
| 186 | + res_dt = ( |
| 187 | + x.dtype |
| 188 | + if x.dtype.kind in "fc" |
| 189 | + else dpt.dtype(ti.default_device_fp_type(q)) |
| 190 | + ) |
| 191 | + res_usm_type = x.usm_type |
| 192 | + if sum_nd == 0: |
| 193 | + return dpt.astype(x, res_dt, copy=True) |
| 194 | + |
| 195 | + s_e = [] |
| 196 | + host_tasks_list = [] |
| 197 | + if tri._sum_over_axis_dtype_supported(inp_dt, res_dt, res_usm_type, q): |
| 198 | + res = dpt.empty( |
| 199 | + res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q |
| 200 | + ) |
| 201 | + ht_e1, r_e = tri._sum_over_axis( |
| 202 | + src=arr2, trailing_dims_to_reduce=sum_nd, dst=res, sycl_queue=q |
| 203 | + ) |
| 204 | + host_tasks_list.append(ht_e1) |
| 205 | + s_e.append(r_e) |
| 206 | + else: |
| 207 | + tmp_dt = _default_reduction_dtype(inp_dt, q) |
| 208 | + tmp = dpt.empty( |
| 209 | + res_shape, dtype=tmp_dt, usm_type=res_usm_type, sycl_queue=q |
| 210 | + ) |
| 211 | + ht_e_tmp, r_e = tri._sum_over_axis( |
| 212 | + src=arr2, trailing_dims_to_reduce=sum_nd, dst=tmp, sycl_queue=q |
| 213 | + ) |
| 214 | + host_tasks_list.append(ht_e_tmp) |
| 215 | + res = dpt.empty( |
| 216 | + res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q |
| 217 | + ) |
| 218 | + ht_e1, c_e = ti._copy_usm_ndarray_into_usm_ndarray( |
| 219 | + src=tmp, dst=res, sycl_queue=q, depends=[r_e] |
| 220 | + ) |
| 221 | + host_tasks_list.append(ht_e1) |
| 222 | + s_e.append(c_e) |
| 223 | + |
| 224 | + if keepdims: |
| 225 | + res_shape = res_shape + (1,) * sum_nd |
| 226 | + inv_perm = sorted(range(nd), key=lambda d: perm[d]) |
| 227 | + res = dpt.permute_dims(dpt.reshape(res, res_shape), inv_perm) |
| 228 | + |
| 229 | + res_shape = res.shape |
| 230 | + # in-place divide |
| 231 | + nelems_arr = dpt.asarray( |
| 232 | + nelems, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q |
| 233 | + ) |
| 234 | + if nelems_arr.shape != res_shape: |
| 235 | + nelems_arr = dpt.broadcast_to(nelems_arr, res_shape) |
| 236 | + ht_e2, _ = tei._divide_inplace( |
| 237 | + lhs=res, rhs=nelems_arr, sycl_queue=q, depends=s_e |
| 238 | + ) |
| 239 | + host_tasks_list.append(ht_e2) |
| 240 | + dpctl.SyclEvent.wait_for(host_tasks_list) |
| 241 | + return res |
| 242 | + |
| 243 | + |
| 244 | +def var(x, axis=None, correction=0.0, keepdims=False): |
| 245 | + if not isinstance(x, dpt.usm_ndarray): |
| 246 | + raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(x)}") |
| 247 | + |
| 248 | + if not isinstance(correction, (int, float)): |
| 249 | + raise TypeError( |
| 250 | + "Expected a Python integer or float for `correction`, got" |
| 251 | + f"{type(x)}" |
| 252 | + ) |
| 253 | + |
| 254 | + if x.dtype.kind == "c": |
| 255 | + raise ValueError("`var` does not support complex types") |
| 256 | + |
| 257 | + res, _, host_tasks_list = _var_impl(x, axis, correction, keepdims) |
| 258 | + dpctl.SyclEvent.wait_for(host_tasks_list) |
| 259 | + return res |
| 260 | + |
| 261 | + |
| 262 | +def std(x, axis=None, correction=0.0, keepdims=False): |
| 263 | + if not isinstance(x, dpt.usm_ndarray): |
| 264 | + raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(x)}") |
| 265 | + |
| 266 | + if not isinstance(correction, (int, float)): |
| 267 | + raise TypeError( |
| 268 | + "Expected a Python integer or float for `correction`," |
| 269 | + f"got {type(x)}" |
| 270 | + ) |
| 271 | + |
| 272 | + if x.dtype.kind == "c": |
| 273 | + raise ValueError("`std` does not support complex types") |
| 274 | + |
| 275 | + res, deps, host_tasks_list = _var_impl(x, axis, correction, keepdims) |
| 276 | + ht_ev, _ = tei._sqrt( |
| 277 | + src=res, dst=res, sycl_queue=res.sycl_queue, depends=deps |
| 278 | + ) |
| 279 | + host_tasks_list.append(ht_ev) |
| 280 | + dpctl.SyclEvent.wait_for(host_tasks_list) |
| 281 | + return res |
0 commit comments