@@ -96,35 +96,9 @@ def transform_output(
9696 execute_result : mliw .ExecuteResult ,
9797 result_device : str ,
9898 ) -> mliw .TransformOutputResult :
99- # transformed = [item.clone() for item in execute_result.predictions]
100- # return OutputTransformResult(transformed)
101-
102- # transformed = [item.bytes() for item in execute_result.predictions]
103-
104- # OutputTransformResult.transformed SHOULD be a list of
105- # capnproto Tensors Or tensor descriptors accompanying bytes
106-
10799 # send the original tensors...
108100 execute_result .predictions = [t .detach () for t in execute_result .predictions ]
109101 # todo: solve sending all tensor metadata that coincisdes with each prediction
110102 return mliw .TransformOutputResult (
111103 execute_result .predictions , [1 ], "c" , "float32"
112104 )
113- # return OutputTransformResult(transformed)
114-
115- # @staticmethod
116- # def serialize_reply(
117- # request: InferenceRequest, results: OutputTransformResult
118- # ) -> t.Any:
119- # # results = IntegratedTorchWorker._prepare_outputs(results.outputs)
120- # # return results
121- # return None
122- # # response = MessageHandler.build_response(
123- # # status=200, # todo: are we satisfied with 0/1 (success, fail)
124- # # # todo: if not detailed messages, this shouldn't be returned.
125- # # message="success",
126- # # result=results,
127- # # custom_attributes=None,
128- # # )
129- # # serialized_resp = MessageHandler.serialize_response(response)
130- # # return serialized_resp
0 commit comments