diff --git a/content/pytorch/concepts/tensor-operations/terms/log10/log10.md b/content/pytorch/concepts/tensor-operations/terms/log10/log10.md new file mode 100644 index 00000000000..9923ced4323 --- /dev/null +++ b/content/pytorch/concepts/tensor-operations/terms/log10/log10.md @@ -0,0 +1,55 @@ +--- +Title: '.log10()' +Description: 'Returns a tensor containing the base-10 logarithm of each element in the input tensor.' +Subjects: + - 'Computer Science' + - 'Machine Learning' +Tags: + - 'Functions' + - 'Machine Learning' + - 'Python' + - 'Tensor' +CatalogContent: + - 'intro-to-py-torch-and-neural-networks' + - 'paths/computer-science' +--- + +In PyTorch, the **`.log10()`** function computes the base-10 logarithm of each element in the input [tensor](https://www.codecademy.com/resources/docs/pytorch/tensors). Mathematically, this is equivalent to applying the function $y_i = \log_{10}(x_i)$ element-wise, where $log_{10}$ is the base-10 logarithm. + +## Syntax + +```pseudo +torch.log10(input, *, out=None) → Tensor +``` + +**Parameters:** + +- `input`: The input tensor containing elements for which the logarithm will be computed. +- `out` (optional): A tensor to store the output. If provided, the result is written to this tensor. Must have the same shape as `input`. + +**Return value:** + +Returns a new tensor where each element is the base-10 logarithm of the corresponding element in `input`. + +## Example + +The following example shows how to compute the element-wise logarithm base 10 of a tensor using `torch.log10()`: + +```py +import torch +import math + +# Define a tensor +x = torch.tensor([5.0 , 6.0 , 7.0 , math.log(2.) ]) + +# Compute the logarithm base 10 +result = torch.log10(x) + +print(result) +``` + +Here is the output: + +```shell +tensor([ 0.6990, 0.7782, 0.8451, -0.1592]) +```