Skip to content

Conversation

@Chao1Han
Copy link
Owner

@Chao1Han Chao1Han commented Sep 3, 2024

No description provided.

@zhangxiaoli73
Copy link
Collaborator

@zhangxiaoli73
Copy link
Collaborator

There is some record function call in ProcessGroupNCCL. Could you check whether those needed on XPU? We need to make sure basic profiler can work on XPU distributed.

@Chao1Han
Copy link
Owner Author

Chao1Han commented Sep 9, 2024

@gujinghui @guangyey @zhangxiaoli73 pls help review again.

TORCH_CHECK(false, "ProcessGroupXCCL::broadcast not implemented");
}

c10::intrusive_ptr<Work> allreduce_sparse(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We don't have plan to support sparse. Then could we skip this op in your ops register for XPU?

Copy link
Owner Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed

We don't have plan to support sparse. Then could we skip this op in your ops register for XPU?

@gujinghui
Copy link

LGTM. Next step is to add UTs?

@Chao1Han
Copy link
Owner Author

LGTM. Next step is to add UTs?

Yes, will create simple ut in test/distributed/test_c10d_xccl.py since just enable allreduce.

target_compile_definitions(torch_xpu PUBLIC USE_C10D_XCCL)
set_source_files_properties(
${TORCH_SRC_DIR}/csrc/distributed/c10d/ProcessGroupXCCL.cpp
PROPERTIES COMPILE_DEFINITIONS "CCL_ENABLE_ZE;CCL_ENABLE_SYCL")
Copy link
Collaborator

@zhangxiaoli73 zhangxiaoli73 Sep 11, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Those flags are just workaround and will be removed after oneCCL gcc build issue is fixed (target to basekit 2025.0).

@zhangxiaoli73
Copy link
Collaborator

@Chao1Han Please make sure your PR include: 1) non-MPI launcher, please pass correct env options to oneCCL 2) Error handling. Abort the work(may need to call some oneCCL finalize API) for timeout.

@zhangxiaoli73
Copy link
Collaborator

LGTM. Next step is to add UTs?

Add UT and also some implementation details refine (see my comments). @Chao1Han

blockingWait_ = getCvarBool(TORCH_XCCL_BLOCKING_WAIT, false);
init();

{
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You need to check its launcher is IMPI or not. Only set CCL_LOCAL_RANK/CCL_LOCAL_SIZE for non-MPI launcher

@Chao1Han Chao1Han changed the title Xccl Xccl process group for Pytorch Sep 18, 2024
std::lock_guard<std::mutex> lock(kvs_mutex);
if (kvs)
return kvs;
std::string storeKey = "ccl_kvs";
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

xccl_kvs

jwieczorekhabana and others added 15 commits September 20, 2024 02:54
…ytorch#134568)

When tensor folding occurs during matmul operation returned tensor is a view. This can cause issues when matmul is used inside a custom function and such view is then returned as output. Then it cannot be modified inplace and causes errors.
It can be especially problematic when after such function inplace allreduce is performed.
Issue is resolved when unsafe_view is returned from matmul instead. This solution aligns matmul decomposition with eager implementation in such a way that a non view tensor is returned.

Test included in this PR reproduces the issue.

Pull Request resolved: pytorch#134568
Approved by: https://github.com/zou3519
…ations (pytorch#136288)

Summary:
To facilitate PSS-2 upgrade, this uses `ndt.NDArray` instead of `nd.ndarray` in type annotations. In Numpy-1.19 (PSS-1) it's an alias to `nd.ndarray` -- a noop.
In Numpy-1.24, `ndt.NDArray` a proper generic type, and without this change uses of `nd.ndarray` generate this Pyre type error:
```counterexample
 Invalid type parameters [24]: Generic type `np.ndarray` expects 2 type parameters.
```

Test Plan: Sandcastle plus visual inspection

Differential Revision: D62977370

Pull Request resolved: pytorch#136288
Approved by: https://github.com/kit1980
This reverts commit 083c914.

Reverted pytorch#136213 on behalf of https://github.com/jeanschmidt due to Seems to have introduced regressions in rocm signals ([comment](pytorch#136213 (comment)))
```
CUDA_VISIBLE_DEVICES=2,3,6,7 pytest test/distributed/_composable/test_composability/test_2d_composability.py -k test_train_parity_2d_transformer
```

Differential Revision: [D62964658](https://our.internmc.facebook.com/intern/diff/D62964658)
Pull Request resolved: pytorch#136237
Approved by: https://github.com/weifengpy
…6142)

Summary:
X-link: pytorch/benchmark#2454

This adds structured logging overhead at a per compile basis to compilation metrics.

To do so, we track the frame_id_frame_compile_id that trace_structured uses to categorize compiles, and use that as the key in our timing table.

Implementation notes:
- If there's times we call trace_structured without a compile id, the time won't be measured. Not really a good way around that today given the compile id framework of compilation metrics. Strobelight is still the best way to measure on a per job basis.
- We don't actually measure the time it takes to log the compilation metrics itself. Fundamentally, it's not possible to log this properly if we're storing the logging number *in* compilation metrics, since there's no way to measure it before we do it(unless we want discrepancies between dynamo_compile and tlparse, which seems suboptimal). Hopefully for a large job, the cost of structured_logging compilation metrics itself is small.
- I wanted to use frame_phase_timing here, but there's a bunch of ids to iron out, and I don't really want to deal with that headache. compilation_time_metrics is sort of what I want, but that isn't by frame/compile id, so it's also a bit off. Putting it into torch.logging as a separate thing so logging tracks its own overhead seems fine, though.

Test Plan:
Run benchmarks/nanogpt and staging logger. See that the new compilation metric is logged to the staged dynamo_compile table:

https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/xazjg5xq

Note that the sum(structured_logging_overhead_s) / sum(entire_frame_compile_time) = 8.387 / 124.278  = 6%, which seems reasonable as the overhead for a small compilation like this.

You can also look at samples for a more detailed log of this.

Reviewed By: oulgen

Differential Revision: D62643611

Pull Request resolved: pytorch#136142
Approved by: https://github.com/bobrenjc93
Signed-off-by: Bob Ren <[email protected]>

I was chatting with @jamesjwu about strategies to learn the code and he suggested adding types to some files. This stack of PRs adds types to _sympy/functions.py

Pull Request resolved: pytorch#136205
Approved by: https://github.com/Skylion007, https://github.com/jamesjwu
…s.h (pytorch#134546)

When size value equal to one, tensor strides value need be skipped to compare.
@ezyang
Pull Request resolved: pytorch#134546
Approved by: https://github.com/janeyx99
…nter (pytorch#136182)

Summary:
Add a third mode where we only print kernel names without dumping any intermediate actual tensor value info.

It can be helpful in quickly identifying the troublesome kernels in CUDA IMA issues.

thanks ColinPeppler and henrylhtsang for this "feature request".

Test Plan:
The output can look like this if set the `AOT_INDUCTOR_DEBUG_INTERMEDIATE_VALUE_PRINTER=3`:

{F1871629091}

Differential Revision: D62791371

Pull Request resolved: pytorch#136182
Approved by: https://github.com/henrylhtsang
…rch#136266)

This fixes a subset of issues for dynamic shapes + DTensor.

It's pretty easy to run into other issues - it's likely that we need pytorch#125941 to land for DTensor + dynamic shapes to work more generally. I ended up writing a test that had dynamic shape inputs but not dynamic shape outputs in order to properly test this fix

Pull Request resolved: pytorch#136266
Approved by: https://github.com/ezyang, https://github.com/yf225
Summary:
This logs all operations when tracing log level is enabled for the `TCPStoreLibUvBackend`. This is very useful for debugging collective operations when issues occur as it logs all hosts and the keys that they're modifying. To minimize total data we only log the keys and not the values

This changes the C10D_* macros to be much more efficient -- previously we would always format the log string even if they would never be printed which is very wasteful for detailed tracing. This now gates them with an if statement to achieve the same behavior with no overhead

Test Plan:
```
TORCH_DISTRIBUTED_DEBUG=DETAIL torchrun --nnodes 1 --nproc_per_node 1 --no-python /bin/bash -c "echo foo"
```

```
I0919 09:26:52.352013 34271 TCPStore.cpp:285] [c10d - debug] The server has started on port = 29500.
I0919 09:26:52.352246 34271 socket.cpp:783] [c10d - debug] The client socket will attempt to connect to an IPv6 address of (127.0.0.1, 29500).
I0919 09:26:52.352241 36903 TCPStoreLibUvBackend.cpp:1173] [c10d - debug] Uv main loop running
I0919 09:26:52.352308 34271 socket.cpp:854] [c10d - trace] The client socket is attempting to connect to [localhost]:29500.
I0919 09:26:52.353633 34271 socket.cpp:945] [c10d] The client socket has connected to [localhost]:29500 on SocketImpl(fd=41, addr=[localhost]:45646, remote=[localhost]:29500).
I0919 09:26:52.354422 34271 TCPStore.cpp:321] [c10d - debug] TCP client connected to host 127.0.0.1:29500
I0919 09:26:52.354558 36903 TCPStoreLibUvBackend.cpp:774] [c10d - trace] validate magic:1015412686 address:[localhost]:45646
I0919 09:26:52.354638 36903 TCPStoreLibUvBackend.cpp:789] [c10d - trace] ping nonce:34271 address:[localhost]:45646
I0919 09:26:52.356122 36903 TCPStoreLibUvBackend.cpp:866] [c10d - trace] add key:init/ val:1 address:[localhost]:45646
I0919 09:26:52.356308 36903 TCPStoreLibUvBackend.cpp:930] [c10d - trace] wait key_count:1 address:[localhost]:45646
I0919 09:26:52.356410 36903 TCPStoreLibUvBackend.cpp:846] [c10d - trace] get key:init/ address:[localhost]:45646
I0919 09:26:52.358688 36903 TCPStoreLibUvBackend.cpp:808] [c10d - trace] set key:/none/torchelastic/role_info/0 address:[localhost]:45646
I0919 09:26:52.360177 36903 TCPStoreLibUvBackend.cpp:930] [c10d - trace] wait key_count:1 address:[localhost]:45646
I0919 09:26:52.360296 36903 TCPStoreLibUvBackend.cpp:1004] [c10d - trace] multi_get key_count:1 address:[localhost]:45646
I0919 09:26:52.362076 36903 TCPStoreLibUvBackend.cpp:1036] [c10d - trace] multi_set key_count:1 address:[localhost]:45646
I0919 09:26:52.364001 36903 TCPStoreLibUvBackend.cpp:930] [c10d - trace] wait key_count:1 address:[localhost]:45646
I0919 09:26:52.364091 36903 TCPStoreLibUvBackend.cpp:846] [c10d - trace] get key:/none/torchelastic/assigned_ranks/0 address:[localhost]:45646
```

Differential Revision: D62924454

Pull Request resolved: pytorch#136320
Approved by: https://github.com/c-p-i-o, https://github.com/XilunWu
…ers for a better debugging experience (pytorch#135913)

Summary: The change involves passing the expired timers to the log_debug_info_for_expired_timers function after to_json() has been applied . This change is made to provide a better debugging experience for the user.

Test Plan: unit tests

Reviewed By: gag1jain

Differential Revision: D62408767

Pull Request resolved: pytorch#135913
Approved by: https://github.com/gag1jain
@Chao1Han Chao1Han closed this Sep 23, 2024
Chao1Han pushed a commit that referenced this pull request Nov 14, 2024
…ytorch#139659)

### Motivation
Today, watchdog only reports that it found a collective timeout:
```
[rank1]:[E1104 14:02:18.767594328 ProcessGroupNCCL.cpp:688] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1, OpType=ALLREDUCE, NumelIn=200, NumelOut=200, Timeout(ms)=5000) ran for 5096 milliseconds before timing out.
```
While this is nice, it is hard to associate the error with user's program or library stack.

### This PR
This PR gives watchdog the ability to report the call-time stack of the collective, so that it would be easier to track the error back to the program's behavior.

The call-time stack was recorded by Flight Recorder with minimal overhead (for details, please read this [doc](https://dev-discuss.pytorch.org/t/fast-combined-c-python-torchscript-inductor-tracebacks/1158) written by @zdevito ). In `ProcessGroupNCCL`, we are only tracking / reporting the python part so that it fits most PyTorch users.

### Demo
[stack_demo.py](https://gist.github.com/kwen2501/6758e18d305d67fc6f3f926217825c09).

```
TORCH_NCCL_TRACE_BUFFER_SIZE=100 torchrun --nproc-per-node 2 stack_demo.py
```
`TORCH_NCCL_TRACE_BUFFER_SIZE` is for turning on the Flight Recorder.

Output:
```
[rank0]:[E1104 14:19:27.591610653 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_reduce from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:2696
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 bar from /data/users/kw2501/sync_async/repro.py:15
#3 foo from /data/users/kw2501/sync_async/repro.py:24
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40

[rank1]:[E1104 14:19:27.771430164 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_gather_into_tensor from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:3630
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 baz from /data/users/kw2501/sync_async/repro.py:20
#3 foo from /data/users/kw2501/sync_async/repro.py:26
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
```

From the log above, we can tell that `bar()` and `baz()` are the places where the two ranks divert.

Pull Request resolved: pytorch#139659
Approved by: https://github.com/wconstab, https://github.com/fduwjj
Chao1Han pushed a commit that referenced this pull request Dec 16, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame #2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame #3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame #4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame #5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame #6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame #7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame #8: 0x0000000100fccbe4 Python`run_mod + 168
    frame #9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame #10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame #11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame #12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame #13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame #14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame #15: 0x0000000100ff1564 Python`pymain_main + 304
    frame #16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame #17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
Chao1Han pushed a commit that referenced this pull request Jan 16, 2025
…143550)

# Motivation
Fix pytorch#143543

# Solution
We should raise python exception instead of aborting...

# Additional Context
without this PR:
```python
>>> import torch
>>> torch.accelerator.current_stream(torch.accelerator.device_count())
terminate called after throwing an instance of 'c10::Error'
  what():  device is out of range, device is 2, total number of device is 2.
Exception raised from check_device_index at /home/dvrogozh/git/pytorch/pytorch/c10/xpu/XPUFunctions.h:36 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0xac (0x7f30707eb95c in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10.so)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xf3 (0x7f307078fc57 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10.so)
frame #2: <unknown function> + 0x19a3e (0x7f3070c2ba3e in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #3: c10::xpu::getCurrentXPUStream(signed char) + 0x2f (0x7f3070c2c83f in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #4: <unknown function> + 0x1ca35 (0x7f3070c2ea35 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #5: <unknown function> + 0x653f15 (0x7f3083391f15 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libtorch_python.so)
frame #6: <unknown function> + 0x39e5f2 (0x7f30830dc5f2 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libtorch_python.so)
<omitting python frames>
frame #20: <unknown function> + 0x29d90 (0x7f308b19bd90 in /lib/x86_64-linux-gnu/libc.so.6)
frame #21: __libc_start_main + 0x80 (0x7f308b19be40 in /lib/x86_64-linux-gnu/libc.so.6)

Aborted (core dumped)
```
with this PR:
```python
>>> import torch
>>> torch.accelerator.current_stream(torch.accelerator.device_count())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/pt-gpu/4T-4652/guangyey/stock-pytorch/torch/accelerator/__init__.py", line 123, in current_stream
    return torch._C._accelerator_getStream(device_index)
RuntimeError: The device index is out of range. It must be in [0, 2), but got 2.
```

Pull Request resolved: pytorch#143550
Approved by: https://github.com/EikanWang, https://github.com/dvrogozh, https://github.com/albanD
pytorchmergebot pushed a commit that referenced this pull request Mar 5, 2025
…pytorch#144120) (pytorch#146372)

Summary:

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg

Pull Request resolved: pytorch#146372
Approved by: https://github.com/jbschlosser
pytorchmergebot pushed a commit that referenced this pull request Jun 4, 2025
Which inherits from `RuntimeError` and contains `error_code`, which in case of CUDA should contain error returned by `cudaGetLastError`

`torch::detail::_new_accelerator_error_object(c10::AcceleratorError&)` follows the pattern of CPython's  [`PyErr_SetString`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L282), namely
- Convert cstr into Python string with `PyUnicode_FromString`
- Create new exception object using `PyObject_CallOneArg` just like it's done in [`_PyErr_CreateException`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L32)
- Set `error_code` property using `PyObject_SetAttrString`
- decref all temporary references

Test that it works and captures CPP backtrace (in addition to CI) by running
```python
import os
os.environ['TORCH_SHOW_CPP_STACKTRACES'] = '1'

import torch

x = torch.rand(10, device="cuda")
y = torch.arange(20, device="cuda")
try:
    x[y] = 2
    print(x)
except torch.AcceleratorError as e:
    print("Exception was raised", e.args[0])
    print("Captured error code is ", e.error_code)
```

which produces following output
```
Exception was raised CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Exception raised from c10_cuda_check_implementation at /home/ubuntu/pytorch/c10/cuda/CUDAException.cpp:41 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) [clone .cold] from CUDAException.cpp:0
#7 void at::native::gpu_kernel_impl<at::native::AbsFunctor<float> >(at::TensorIteratorBase&, at::native::AbsFunctor<float> const&) [clone .isra.0] from tmpxft_000191fc_00000000-6_AbsKernel.cudafe1.cpp:0
#8 at::native::abs_kernel_cuda(at::TensorIteratorBase&) from ??:0
#9 at::Tensor& at::native::unary_op_impl_with_complex_to_float_out<at::native::abs_stub_DECLARE_DISPATCH_type>(at::Tensor&, at::Tensor const&, at::native::abs_stub_DECLARE_DISPATCH_type&, bool) [clone .constprop.0] from UnaryOps.cpp:0
#10 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA_out_abs_out(at::Tensor const&, at::Tensor&) from RegisterCUDA_0.cpp:0
#11 at::_ops::abs_out::call(at::Tensor const&, at::Tensor&) from ??:0
#12 at::native::abs(at::Tensor const&) from ??:0
#13 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeExplicitAutograd__abs>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeExplicitAutograd_0.cpp:0
#14 at::_ops::abs::redispatch(c10::DispatchKeySet, at::Tensor const&) from ??:0
#15 torch::autograd::VariableType::(anonymous namespace)::abs(c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#16 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::abs>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, at::Tensor (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#17 at::_ops::abs::call(at::Tensor const&) from ??:0
#18 at::native::isfinite(at::Tensor const&) from ??:0
#19 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__isfinite>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeImplicitAutograd_0.cpp:0
#20 at::_ops::isfinite::call(at::Tensor const&) from ??:0
#21 torch::autograd::THPVariable_isfinite(_object*, _object*, _object*) from python_torch_functions_2.cpp:0
#22 PyObject_CallFunctionObjArgs from ??:0
#23 _PyObject_MakeTpCall from ??:0
#24 _PyEval_EvalFrameDefault from ??:0
pytorch#25 _PyObject_FastCallDictTstate from ??:0
pytorch#26 _PyStack_AsDict from ??:0
pytorch#27 _PyObject_MakeTpCall from ??:0
pytorch#28 _PyEval_EvalFrameDefault from ??:0
pytorch#29 _PyFunction_Vectorcall from ??:0
pytorch#30 _PyEval_EvalFrameDefault from ??:0
pytorch#31 _PyFunction_Vectorcall from ??:0
pytorch#32 _PyEval_EvalFrameDefault from ??:0
pytorch#33 _PyFunction_Vectorcall from ??:0
pytorch#34 _PyEval_EvalFrameDefault from ??:0
pytorch#35 PyFrame_GetCode from ??:0
pytorch#36 PyNumber_Xor from ??:0
pytorch#37 PyObject_Str from ??:0
pytorch#38 PyFile_WriteObject from ??:0
pytorch#39 _PyWideStringList_AsList from ??:0
pytorch#40 _PyDict_NewPresized from ??:0
pytorch#41 _PyEval_EvalFrameDefault from ??:0
pytorch#42 PyEval_EvalCode from ??:0
pytorch#43 PyEval_EvalCode from ??:0
pytorch#44 PyUnicode_Tailmatch from ??:0
pytorch#45 PyInit__collections from ??:0
pytorch#46 PyUnicode_Tailmatch from ??:0
pytorch#47 _PyRun_SimpleFileObject from ??:0
pytorch#48 _PyRun_AnyFileObject from ??:0
pytorch#49 Py_RunMain from ??:0
pytorch#50 Py_BytesMain from ??:0
pytorch#51 __libc_init_first from ??:0
pytorch#52 __libc_start_main from ??:0
pytorch#53 _start from ??:0

Captured error code is  710
```
Pull Request resolved: pytorch#152023
Approved by: https://github.com/eqy, https://github.com/mradmila, https://github.com/ngimel
ghstack dependencies: pytorch#154436
pytorchmergebot pushed a commit that referenced this pull request Jun 4, 2025
Use uint64_t index types to avoid
```
 torch_np/numpy_tests/core/test_einsum.py::TestEinsum::test_einsum_broadcast /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:132:24: runtime error: signed integer overflow: 9223365439786057728 + 13194139533312 cannot be represented in type 'long'
    #0 0x7f30d26166ba in std::enable_if<std::is_same_v<long, long>, void>::type at::native::cpublas::(anonymous namespace)::gemm_notrans_<long, long, long>(long, long, long, long, long const*, long, long const*, long, long, long*, long) /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:132:24
    #1 0x7f30d26166ba in void at::native::cpublas::(anonymous namespace)::gemm_core_<long, long, long>(at::native::TransposeType, at::native::TransposeType, long, long, long, long, long const*, long, long const*, long, long, long*, long) /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:451:12
    #2 0x7f30d25fba1b in at::native::cpublas::(anonymous namespace)::cpublas_gemm_impl(c10::ScalarType, at::native::TransposeType, at::native::TransposeType, long, long, long, c10::Scalar const&, void const*, long, void const*, long, c10::Scalar const&, void*, long)::$_2::operator()() const::'lambda2'()::operator()() const /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:485:3
    #3 0x7f30d25fba1b in at::native::cpublas::(anonymous namespace)::cpublas_gemm_impl(c10::ScalarType, at::native::TransposeType, at::native::TransposeType, long, long, long, c10::Scalar const&, void const*, long, void const*, long, c10::Scalar const&, void*, long)::$_2::operator()() const /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:485:3
```

Pull Request resolved: pytorch#154809
Approved by: https://github.com/soulitzer
pytorchmergebot pushed a commit that referenced this pull request Jun 9, 2025
Vibe-coded with Codex, after collecting a backtrace, see https://chatgpt.com/s/cd_68438be8a1248191adbfa0a5f000e60b

Even though, check for empty tensor list exists in `at::cat` crash might happens while resolving named dimension to position, by calling `dimname_to_position(tensors[0], dim)`, see backtrace below
```
(lldb) up
frame #1: 0x00000001101146dc libtorch_cpu.dylib`at::TensorBase::has_names(this=0x0000000000000000) const at TensorBase.h:559:10
   556 	  bool has_names() const {
   557 	    // If a user is using unnamed tensors, then we can short-circuit right here.
   558 	    // Otherwise, impl::has_names attempts to retrieve names.
-> 559 	    if (!impl_->has_named_tensor_meta()) {
   560 	      return false;
   561 	    }
   562 	    return impl::has_names(unsafeGetTensorImpl());
(lldb) up
frame #2: 0x00000001101144c4 libtorch_cpu.dylib`at::dimname_to_position(tensor=0x0000000000000000, dim=Dimname @ 0x000000016fdfe348) at NamedTensorUtils.cpp:23:3
   20  	int64_t dimname_to_position(const Tensor& tensor, Dimname dim) {
   21  	  TORCH_CHECK(dim.type() != NameType::WILDCARD,
   22  	      "Please look up dimensions by name, got: name = None.");
-> 23  	  TORCH_CHECK(tensor.has_names(),
   24  	      "Name ", dim, " not found in ", toDimnameRepr(tensor), ".");
   25  	  const auto names = tensor.names();
   26
```

TODOs:
 - May be move test from `test_tensor_creation.py` to OpInfo (not sure which one is more readable)
 - Replace  `TORCH_CHECK` with `TORCH_CHECK_VALUE` and adjust unit tests

Fixes pytorch#155306
Pull Request resolved: pytorch#155383
Approved by: https://github.com/cyyever, https://github.com/ezyang
ghstack dependencies: pytorch#155382
Chao1Han pushed a commit that referenced this pull request Jul 7, 2025
…torch#156600)

Don't call `sum()` on a tensor that is default constructed.

Previously we could call `sum()` on a tensor that was default-contructed. That would lead to an error like this:

```
Traceback (most recent call last):
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 58, in testPartExecutor
    yield
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 634, in run
    self._callTestMethod(testMethod)
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 589, in _callTestMethod
    if method() is not None:
       ^^^^^^^^
  File "/home/ahmads/personal/pytorch/torch/testing/_internal/common_utils.py", line 3191, in wrapper
    method(*args, **kwargs)
  File "/home/ahmads/personal/pytorch/test/test_nn.py", line 7235, in test_layer_norm_backwards_eps
    ln_out_cuda.backward(grad_output_cuda)
  File "/home/ahmads/personal/pytorch/torch/_tensor.py", line 647, in backward
    torch.autograd.backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/__init__.py", line 354, in backward
    _engine_run_backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/graph.py", line 829, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: tensor does not have a device
Exception raised from device_default at /home/ahmads/personal/pytorch/c10/core/TensorImpl.h:1265 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, char const*) from ??:0
#7 at::TensorBase::options() const from :0
#8 at::meta::resize_reduction(at::impl::MetaBase&, at::Tensor const&, c10::OptionalArrayRef<long>, bool, c10::ScalarType, bool) from :0
#9 at::meta::structured_sum_dim_IntList::meta(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#10 at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#11 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>), &at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType> > >, at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#12 at::_ops::sum_dim_IntList::call(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#13 void at::native::(anonymous namespace)::LaunchGammaBetaBackwardCUDAKernel<float, float>(float const*, float const*, float const*, float const*, long, long, at::Tensor*, at::Tensor*, CUstream_st*) from ??:0
#14 void at::native::(anonymous namespace)::LayerNormBackwardKernelImplInternal<float>(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#15 at::native::(anonymous namespace)::LayerNormBackwardKernelImpl(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#16 at::native::layer_norm_backward_cuda(at::Tensor const&, at::Tensor const&, c10::ArrayRef<long>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from ??:0
#17 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA__native_layer_norm_backward(at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from RegisterCUDA_0.cpp:0

```

Now we only call `sum(0)` on tensors that are defined and properly guard the `sum(0)` and assignment.
Pull Request resolved: pytorch#156600
Approved by: https://github.com/eqy, https://github.com/ngimel
pytorchmergebot pushed a commit that referenced this pull request Jul 24, 2025
For tensor with non-zero offset, it must be multiplied by element size

Add regression test by creating Tensor in array of 6 elements with offset 3, which before the fix crashed with
```
C++ exception with description "setStorage: sizes [3, 3], strides [0, 1], storage offset 3, and itemsize 4 requiring a storage size of 24 are out of bounds for storage of size 15
Exception raised from checkInBoundsForStorage at /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/Resize.h:123 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 56 (0x104a9cd44 in libc10.dylib)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 120 (0x104a9a05c in libc10.dylib)
frame #2: void at::native::checkInBoundsForStorage<long long>(c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long, caffe2::TypeMeta const&, c10::Storage const&) + 656 (0x111dbd314 in libtorch_cpu.dylib)
frame #3: void at::native::setStrided<long long>(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long) + 152 (0x111dcd22c in libtorch_cpu.dylib)
frame #4: at::native::as_strided_tensorimpl(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) + 312 (0x111dccf98 in libtorch_cpu.dylib)
frame #5: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU__as_strided(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>>>, at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 104 (0x1129a1e94 in libtorch_cpu.dylib)
frame #6: at::_ops::as_strided::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 476 (0x112200ad0 in libtorch_cpu.dylib)
frame #7: at::Tensor::as_strided(c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) const + 236 (0x1115db098 in libtorch_cpu.dylib)
frame #8: at::native::expand(at::Tensor const&, c10::ArrayRef<long long>, bool) + 348 (0x111dcc0d4 in libtorch_cpu.dylib)
frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::ADInplaceOrView::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 116 (0x1157ac410 in libtorch_cpu.dylib)
frame #10: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::autograd::VariableType::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 992 (0x114e8b010 in libtorch_cpu.dylib)
frame #11: at::_ops::expand::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 316 (0x112743c90 in libtorch_cpu.dylib)
frame #12: at::expand_size(at::Tensor const&, c10::ArrayRef<long long>) + 164 (0x1047d82b4 in basic)
frame #13: BasicTest_TestForBlobResizeCPU_Test::TestBody() + 284 (0x1047d8048 in basic)
```
Pull Request resolved: pytorch#158690
Approved by: https://github.com/angelayi
Chao1Han pushed a commit that referenced this pull request Sep 18, 2025
)

Summary:
This diff fixes two things which come up when testing a tgif-published pt2 model remote net:
1) Updates isSameDevice to handle meta device to avoid this error:
```
what():  Unsupported device typemeta and meta
Exception raised from isSameDevice at fbcode/caffe2/torch/nativert/executor/PlacementUtils.cpp:20
```

2. Updates xl weight v2 loading logic in Weights.cpp to handle non-TBE xl-weights. Today, we enforce the device is the same for an old weight and new weight when replacing with ModelRunnerAdapter.setAttr(). However, the way we replace non-TBE xl weights is to find any weights on "meta" device and then replace them with their correct weight with real device from xl_weights folder. Therefore, the new weight and old weight will always have different devices and the device check is invalid. I don't think we've run into this so far bc non-TBE xl weights have not been thoroughly tested until now.

Test Plan:
Run MRS you model merge net, which uses non-TBE xl weights. Confirm that before change #1 we get error:
```
Unsupported device typemeta and meta
```
Then after change #1 and before change #2 we get:
```
what():  Mismatched device for merge.user_tower.linear.weight: meta vs cpu
Exception raised from validateValue at fbcode/caffe2/torch/nativert/executor/Weights.cpp:374
```
After change run is successful
Command:
```
MODEL_ENTITY_ID=921242082
SNAPSHOT_ID=1269
module_name=merge
SAMPLE_INPUT_DIR=/data/users/georgiaphillips/models/921242082/${SNAPSHOT_ID}/${module_name}_archive/package/data/sample_inputs
buck2 run mode/dev-nosan -c fbcode.nvcc_arch=h100,a100 -c fbcode.enable_gpu_sections=true caffe2/torch/fb/model_transform/fx2trt/packaging:load_net_predictor -- --loadMode=Benchmark --inputNetFile=/data/users/$USER/models/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/${MODEL_ENTITY_ID}_${SNAPSHOT_ID}.predictor.${module_name} --moduleName=${module_name} --submodToDevice="merge|cuda0"  --benchmarkEnableProfiling=false --disableStaticRuntime=true --doNotRandomizeSampleInputs=true --benchmarkDontRebatchSamples=true --pytorch_predictor_sigmoid_static_dispatch_enable=false --pytorch_predictor_sigmoid_graph_passes_enable=false --sampleInputFilePath=${SAMPLE_INPUT_DIR}/${module_name}.pt
```

Rollback Plan:

Differential Revision: D80713052

Pull Request resolved: pytorch#162842
Approved by: https://github.com/henryoier
Chao1Han pushed a commit that referenced this pull request Oct 21, 2025
…rch#165479)

These happen when building with CMAKE_BUILD_TYPE=RelWithAssert

This should fix two types of failures that started with pytorch#163665

Disclaimer that I used a lot of AI since I don't how pybind works or what refcounts and pointers are, so idk if this is a good solution, or even a solution at all (fwiw the tests pass now)

The first one type is

Truncated:
```
    default_pg, _ = _new_process_group_helper(
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2096, in _new_process_group_helper
    backend_class = creator_fn(dist_backend_opts, backend_options)
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/distributed/fake_pg.py", line 25, in _create_fake_pg
    return FakeProcessGroup._create_internal(
RuntimeError: new_refcount != 1 INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/c10/util/intrusive_ptr.h":319, please report a bug to PyTorch. intrusive_ptr: Cannot increase refcount after it reached zero.
Exception raised from retain_ at /var/lib/jenkins/workspace/c10/util/intrusive_ptr.h:319 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from ??:0
#7 c10::detail::torchInternalAssertFail(char const*, char const*, unsigned int, char const*, char const*) from ??:0
#8 void pybind11::class_<c10d::FakeProcessGroup, (anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup> >::init_instance<(anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup>, 0>(pybind11::detail::instance*, void const*) from init.cpp:0
#9 pybind11::detail::type_caster_generic::cast(void const*, pybind11::return_value_policy, pybind11::handle, pybind11::detail::type_info const*, void* (*)(void const*), void* (*)(void const*), void const*) from :0
#10 pybind11::cpp_function::initialize<torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)pytorch#127}, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> >, int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v>(torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)pytorch#127}&&, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> > (*)(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call&) from init.cpp:0
```
and I fix it here by getting rid of `DontIncreaseRefcount` and using make_intrusive to do the ref count handling instead.  However, I also had to move the constructor to be public, which I think is not good, based on the reasoning of the original PR

The other one type is
```
Traceback (most recent call last):
  File "/var/lib/jenkins/workspace/test/test_testing.py", line 2415, in test_no_warning_on_import
    self.assertEqual(out, "")
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4233, in assertEqual
    raise error_metas.pop()[0].to_error(  # type: ignore[index]
AssertionError: String comparison failed: "/opt/conda/envs/py_3.10/lib/python3.10/s[352 chars]):\n" != ''
- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/__init__.py:29: FutureWarning: pybind11-bound class 'torch._C._distributed_c10d.FakeProcessGroup' is using an old-style placement-new '__init__' which has been deprecated. See the upgrade guide in pybind11's docs. This message is only visible when compiled in debug mode.
-   if is_available() and not torch._C._c10d_init():

To execute this test, run the following from the base repo dir:
    python test/test_testing.py TestImports.test_no_warning_on_import
```
which I fix by getting rid of the `__init__` which I think is ok since it'll just error if you try to make one?

Pull Request resolved: pytorch#165479
Approved by: https://github.com/ezyang
Chao1Han pushed a commit that referenced this pull request Oct 21, 2025
…rch#165479)

These happen when building with CMAKE_BUILD_TYPE=RelWithAssert

This should fix two types of failures that started with pytorch#163665

Disclaimer that I used a lot of AI since I don't how pybind works or what refcounts and pointers are, so idk if this is a good solution, or even a solution at all (fwiw the tests pass now)

The first one type is

Truncated:
```
    default_pg, _ = _new_process_group_helper(
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2096, in _new_process_group_helper
    backend_class = creator_fn(dist_backend_opts, backend_options)
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/distributed/fake_pg.py", line 25, in _create_fake_pg
    return FakeProcessGroup._create_internal(
RuntimeError: new_refcount != 1 INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/c10/util/intrusive_ptr.h":319, please report a bug to PyTorch. intrusive_ptr: Cannot increase refcount after it reached zero.
Exception raised from retain_ at /var/lib/jenkins/workspace/c10/util/intrusive_ptr.h:319 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) from ??:0
#7 c10::detail::torchInternalAssertFail(char const*, char const*, unsigned int, char const*, char const*) from ??:0
#8 void pybind11::class_<c10d::FakeProcessGroup, (anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup> >::init_instance<(anonymous namespace)::IntrusivePtrNoGilDestructor<c10d::FakeProcessGroup>, 0>(pybind11::detail::instance*, void const*) from init.cpp:0
#9 pybind11::detail::type_caster_generic::cast(void const*, pybind11::return_value_policy, pybind11::handle, pybind11::detail::type_info const*, void* (*)(void const*), void* (*)(void const*), void const*) from :0
#10 pybind11::cpp_function::initialize<torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)pytorch#127}, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> >, int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v>(torch::distributed::c10d::(anonymous namespace)::c10d_init(_object*, _object*)::{lambda(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >)pytorch#127}&&, c10::intrusive_ptr<c10d::FakeProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup> > (*)(int, int, c10::intrusive_ptr<c10d::FakeProcessGroup::Options, c10::detail::intrusive_target_default_null_type<c10d::FakeProcessGroup::Options> >), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call&) from init.cpp:0
```
and I fix it here by getting rid of `DontIncreaseRefcount` and using make_intrusive to do the ref count handling instead.  However, I also had to move the constructor to be public, which I think is not good, based on the reasoning of the original PR

The other one type is
```
Traceback (most recent call last):
  File "/var/lib/jenkins/workspace/test/test_testing.py", line 2415, in test_no_warning_on_import
    self.assertEqual(out, "")
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4233, in assertEqual
    raise error_metas.pop()[0].to_error(  # type: ignore[index]
AssertionError: String comparison failed: "/opt/conda/envs/py_3.10/lib/python3.10/s[352 chars]):\n" != ''
- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/__init__.py:29: FutureWarning: pybind11-bound class 'torch._C._distributed_c10d.FakeProcessGroup' is using an old-style placement-new '__init__' which has been deprecated. See the upgrade guide in pybind11's docs. This message is only visible when compiled in debug mode.
-   if is_available() and not torch._C._c10d_init():

To execute this test, run the following from the base repo dir:
    python test/test_testing.py TestImports.test_no_warning_on_import
```
which I fix by getting rid of the `__init__` which I think is ok since it'll just error if you try to make one?

Pull Request resolved: pytorch#165479
Approved by: https://github.com/ezyang
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.