-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathREPP.py
executable file
·361 lines (275 loc) · 16.2 KB
/
REPP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 14 11:46:22 2020
@author: asabater
"""
import pickle
import numpy as np
from scipy import signal, ndimage
import json
from repp_utils import get_video_frame_iterator, get_iou, get_pair_features
from ObjectDetection_mAP_by_motion import motion_utils
INF = 9e15
# =============================================================================
# Robust and Efficient Post-Processing for Video Object Detection (REPP)
# =============================================================================
class REPP():
def __init__(self, min_tubelet_score, add_unmatched, min_pred_score,
distance_func, clf_thr, clf_mode, appearance_matching,
recoordinate, recoordinate_std,
store_coco = False, store_imdb = False,
annotations_filename = '',
**kwargs):
self.min_tubelet_score = min_tubelet_score # threshold to filter out low-scoring tubelets
self.min_pred_score = min_pred_score # threshold to filter out low-scoring base predictions
self.add_unmatched = add_unmatched # True to add unlinked detections to the final set of detections. Leads to a lower mAP
self.distance_func = distance_func # LogReg to use the learning-based linking model. 'def' to use the baseline from SBM
self.clf_thr = clf_thr # threshold to filter out detection linkings
self.clf_mode = clf_mode # Relation between the logreg score and the semmantic similarity. 'dot' recommended
self.appearance_matching = appearance_matching # True to use appearance similarity features
self.recoordinate = recoordinate # True to perform a recordinating step
self.recoordinate_std = recoordinate_std # Strength of the recoordinating step
self.store_coco = store_coco # True to store predictions with the COCO format
self.store_imdb = store_imdb # True to store predictions with the IMDB format. Needed for evaluation
if self.distance_func == 'def':
self.match_func = self.distance_def
elif self.distance_func == 'logreg':
if self.appearance_matching:
print('Loading clf matching model:', './REPP_models/matching_model_logreg_appearance.pckl')
self.clf_match, self.matching_feats = pickle.load(open('./REPP_models/matching_model_logreg_appearance.pckl', 'rb'))
else:
print('Loading clf matching model:', './REPP_models/matching_model_logreg.pckl')
self.clf_match, self.matching_feats = pickle.load(open('./REPP_models/matching_model_logreg.pckl', 'rb'))
self.match_func = self.distance_logreg
else: raise ValueError('distance_func not recognized:', self.distance_func)
if self.store_imdb:
imageset_filename = motion_utils.annotations_to_imageset(annotations_filename)
with open(imageset_filename, 'r') as f: image_set = f.read().splitlines()
self.image_set = { l.split()[0]:int(l.split()[1]) for l in image_set }
def distance_def(self, p1, p2):
iou = get_iou(p1['bbox'][:], p2['bbox'][:])
score = np.dot(p1['scores'], p2['scores'])
div = iou * score
if div == 0: return INF
return 1 / div
# Computes de linking score between a pair of detections
def distance_logreg(self, p1, p2):
pair_features = get_pair_features(p1, p2, self.matching_feats) #, image_size[0], image_size[1]
score = self.clf_match.predict_proba(np.array([[ pair_features[col] for col in self.matching_feats ]]))[:,1]
if score < self.clf_thr: return INF
if self.clf_mode == 'max':
score = p1['scores'].max() * p2['scores'].max() * score
elif self.clf_mode == 'dot':
score = np.dot(p1['scores'], p2['scores']) * score
elif self.clf_mode == 'dot_plus':
score = np.dot(p1['scores'], p2['scores']) + score
elif self.clf_mode == 'def':
return distance_def(p1, p2)
elif self.clf_mode == 'raw':
pass
else: raise ValueError('error post_clf')
return 1 - score
# Return a list of pairs of frames lnked accross frames
def get_video_pairs(self, preds_frame):
num_frames = len(preds_frame)
frames = list(preds_frame.keys())
frames = sorted(frames, key=int)
pairs, unmatched_pairs = [], []
for i in range(num_frames - 1):
pairs_i = []
frame_1, frame_2 = frames[i], frames[i+1]
preds_frame_1, preds_frame_2 = preds_frame[frame_1], preds_frame[frame_2]
num_preds_1, num_preds_2 = len(preds_frame_1), len(preds_frame_2)
# Any frame has no preds -> save empty pairs
if num_preds_1 != 0 and num_preds_2 != 0:
# Get distance matrix
distances = np.zeros((num_preds_1, num_preds_2))
for i,p1 in enumerate(preds_frame_1):
for j,p2 in enumerate(preds_frame_2):
distances[i,j] = self.match_func(p1, p2)
# Get frame pairs
pairs_i = self.solve_distances_def(distances, maximization_problem=False)
unmatched_pairs_i = [ i for i in range(num_preds_1) if i not in [ p[0] for p in pairs_i] ]
pairs.append(pairs_i); unmatched_pairs.append(unmatched_pairs_i)
return pairs, unmatched_pairs
# Solve distance matrix and return a list of pair of linked detections from two consecutive frames
def solve_distances_def(self, distances, maximization_problem):
pairs = []
if maximization_problem:
while distances.min() != -1:
inds = np.where(distances == distances.max())
a,b = inds if len(inds[0]) == 1 else (inds[0][0], inds[1][0])
a,b = int(a), int(b)
pairs.append((a, b))
distances[a,:] = -1
distances[:,b] = -1
else:
while distances.min() != INF:
inds = np.where(distances == distances.min())
a,b = inds if len(inds[0]) == 1 else (inds[0][0], inds[1][0])
a,b = int(a), int(b)
pairs.append((a, b))
distances[a,:] = INF
distances[:,b] = INF
return pairs
# Create tubelets from list of linked pairs
def get_tubelets(self, preds_frame, pairs):
num_frames = len(preds_frame)
frames = list(preds_frame.keys())
tubelets, tubelets_count = [], 0
first_frame = 0
while first_frame != num_frames-1:
ind = None
for current_frame in range(first_frame, num_frames-1):
# Continue tubelet
if ind is not None:
pair = [ p for p in pairs[current_frame] if p[0] == ind ]
# Tubelet ended
if len(pair) == 0:
tubelets[tubelets_count].append((current_frame, preds_frame[frames[current_frame]][ind]))
tubelets_count += 1
ind = None
break
# Continue tubelet
else:
pair = pair[0]; del pairs[current_frame][pairs[current_frame].index(pair)]
tubelets[tubelets_count].append((current_frame, preds_frame[frames[current_frame]][ind]))
ind = pair[1]
# Looking for a new tubelet
else:
# No more candidates in current frame -> keep searching
if len(pairs[current_frame]) == 0:
first_frame = current_frame+1
continue
# Beginning a new tubelet in current frame
else:
pair = pairs[current_frame][0]; del pairs[current_frame][0]
tubelets.append([(current_frame,
preds_frame[frames[current_frame]][pair[0]])])
ind = pair[1]
# Tubelet has finished in the last frame
if ind != None:
tubelets[tubelets_count].append((current_frame+1, preds_frame[frames[current_frame+1]][ind])) # 4
tubelets_count += 1
ind = None
return tubelets
# Performs the re-scoring refinment
def rescore_tubelets(self, tubelets):
for t_num in range(len(tubelets)):
t_scores = [ p['scores'] for _,p in tubelets[t_num] ]
new_scores = np.mean(t_scores, axis=0)
for i in range(len(tubelets[t_num])): tubelets[t_num][i][1]['scores'] = new_scores
for i in range(len(tubelets[t_num])):
if 'emb' in tubelets[t_num][i][1]: del tubelets[t_num][i][1]['emb']
return tubelets
# Performs de re-coordinating refinment
def recoordinate_tubelets_full(self, tubelets, ms=-1):
if ms == -1: ms = 40
for t_num in range(len(tubelets)):
t_coords = np.array([ p['bbox'] for _,p in tubelets[t_num] ])
w = signal.gaussian(len(t_coords)*2-1, std=self.recoordinate_std*100/ms)
w /= sum(w)
for num_coord in range(4):
t_coords[:,num_coord] = ndimage.convolve(t_coords[:,num_coord], w, mode='reflect')
for num_bbox in range(len(tubelets[t_num])):
tubelets[t_num][num_bbox][1]['bbox'] = t_coords[num_bbox,:].tolist()
return tubelets
# Extracts predictions from tubelets
def tubelets_to_predictions(self, tubelets_video, preds_format):
preds, track_id_num = [], 0
for tub in tubelets_video:
for _,pred in tub:
for cat_id, s in enumerate(pred['scores']):
if s < self.min_pred_score: continue
if preds_format == 'coco':
preds.append({
'image_id': pred['image_id'],
'bbox': list(map(float, pred['bbox'])),
'score': float(s),
'category_id': cat_id,
'track_id': track_id_num,
})
elif preds_format == 'imdb':
preds.append('{} {} {} {} {} {} {}'.format(
self.image_set['/'.join(pred['image_id'].split('/')[-2:])],
cat_id + 1,
float(s),
pred['bbox'][0], pred['bbox'][1],
pred['bbox'][0]+pred['bbox'][2], pred['bbox'][1]+pred['bbox'][3]
))
else: raise ValueError('Predictions format not recognized')
track_id_num += 1
return preds
def __call__(self, video_predictions):
# Filter out low-score predictions
for frame in video_predictions.keys():
video_predictions[frame] = [ p for p in video_predictions[frame] if max(p['scores']) >= self.min_tubelet_score ]
video_predictions = dict(sorted(video_predictions.items()))
pairs, unmatched_pairs = self.get_video_pairs(video_predictions)
tubelets = self.get_tubelets(video_predictions, pairs)
tubelets = self.rescore_tubelets(tubelets)
if self.recoordinate: tubelets = self.recoordinate_tubelets_full(tubelets)
if self.add_unmatched:
print('Adding unmatched')
tubelets += self.add_unmatched_pairs_as_single_tubelet(unmatched_pairs, video_predictions)
if self.store_coco: predictions_coco = self.tubelets_to_predictions(tubelets, 'coco')
else: predictions_coco = []
if self.store_imdb: predictions_imdb = self.tubelets_to_predictions(tubelets, 'imdb')
else: predictions_imdb = []
return predictions_coco, predictions_imdb
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Apply REPP to a saved predictions file')
parser.add_argument('--repp_cfg', help='repp cfg filename', type=str)
parser.add_argument('--predictions_file', help='predictions filename', type=str)
parser.add_argument('--from_python_2', help='predictions filename', action='store_true')
parser.add_argument('--evaluate', help='evaluate motion mAP', action='store_true')
parser.add_argument('--annotations_filename', help='ILSVRC annotations. Needed for ILSVRC evaluation', required=False, type=str)
parser.add_argument('--path_dataset', help='path of the Imagenet VID dataset. Needed for ILSVRC evaluation', required=False, type=str)
parser.add_argument('--store_coco', help='store processed predictions in coco format', action='store_true')
parser.add_argument('--store_imdb', help='store processed predictions in imdb format', action='store_true')
args = parser.parse_args()
assert not (args.evaluate and args.annotations_filename is None), 'Annotations filename is required for ILSVRC evaluation'
assert not (args.evaluate and args.path_dataset is None), 'Dataset path is required for ILSVRC evaluation'
print(' * Loading REPP cfg')
repp_params = json.load(open(args.repp_cfg, 'r'))
print(repp_params)
predictions_file_out = args.predictions_file.replace('.pckl', '_repp')
repp = REPP(**repp_params, annotations_filename=args.annotations_filename,
store_coco=args.store_coco, store_imdb=args.store_imdb or args.evaluate)
from tqdm import tqdm
import sys
total_preds_coco, total_preds_imdb = [], []
print(' * Applying repp')
if args.evaluate:
with open(args.annotations_filename, 'r') as f: annotations = sorted(f.read().splitlines())
pbar = tqdm(total=len(annotations), file=sys.stdout)
for vid, video_preds in get_video_frame_iterator(args.predictions_file, from_python_2=args.from_python_2):
predictions_coco, predictions_imdb = repp(video_preds)
total_preds_coco += predictions_coco
total_preds_imdb += predictions_imdb
if args.evaluate: pbar.update(len(video_preds))
if args.store_imdb:
print(' * Dumping predictions with the IMDB format:', predictions_file_out + '_imdb.txt')
with open(predictions_file_out + '_imdb.txt', 'w') as f:
for p in total_preds_imdb: f.write(p + '\n')
if args.store_coco:
print(' * Dumping predictions with the COCO format:', predictions_file_out + '_coco.json')
json.dump(total_preds_coco, open(predictions_file_out + '_coco.json', 'w'))
if args.evaluate:
print(' * Evaluating REPP predictions')
import sys
sys.path.append('ObjectDetection_mAP_by_motion')
from ObjectDetection_mAP_by_motion import motion_utils
from ObjectDetection_mAP_by_motion.imagenet_vid_eval_motion import get_motion_mAP
import os
stats_file_motion = predictions_file_out.replace('preds', 'stats').replace('.txt', '.json')
motion_iou_file_orig = './ObjectDetection_mAP_by_motion/imagenet_vid_groundtruth_motion_iou.mat'
imageset_filename_orig = os.path.join(args.path_dataset, 'ImageSets/VID/val.txt')
if os.path.isfile(stats_file_motion): os.remove(stats_file_motion)
stats = get_motion_mAP(args.annotations_filename, args.path_dataset,
predictions_file_out + '_imdb.txt', stats_file_motion,
motion_iou_file_orig, imageset_filename_orig)
print(stats)
print(' * Stats stored:', stats_file_motion)