Current Status | Installation | Message Categories | Reading | Parsing | Generating | Serializing | Examples | Extensibility | Troubleshooting | Author & License
pyqgc is an original Python 3 parser for the QGC © protocol. QGC is a proprietary binary protocol implemented on Quectel ™ GNSS receiver modules. pyqgc can also parse NMEA 0183 © and RTCM3 © protocols via the underlying pynmeagps and pyrtcm packages from the same author - hence it covers all the protocols that Quectel QGC GNSS receivers are capable of outputting.
The pyqgc homepage is located at https://github.com/semuconsulting/pyqgc.
This is an independent project and we have no affiliation whatsoever with Quectel.
The current alpha release implements QGC message types for the LG290P and LG580P receivers and the LU600 IMU module, but is readily extensible. Refer to QGC_MSGIDS in qgctypes_core.py for the complete dictionary of messages currently supported. QGC protocol information sourced from public domain Quectel GNSS Protocol Specification © 2021-2025, Quectel.
Sphinx API Documentation in HTML format is available at https://www.semuconsulting.com/pyqgc/.
Contributions welcome - please refer to CONTRIBUTING.MD. Feel free to discuss any proposed changes beforehand in the Discussion Channel.
Bug reports and Feature requests - please use the templates provided. For general queries and advice, post a message to one of the pyqgc Discussions channels.
pyqgc is compatible with Python>=3.10. In the following, python3 & pip refer to the Python 3 executables. You may need to substitute python for python3, depending on your particular environment (on Windows it's generally python).
The recommended way to install the latest version of pyqgc is with pip:
python3 -m pip install --upgrade pyqgcIf required, pyqgc can also be installed into a virtual environment, e.g.:
python3 -m venv env
source env/bin/activate # (or env\Scripts\activate on Windows)
python3 -m pip install --upgrade pyqgcFor Conda users, pyqgc is also available from conda forge:
conda install -c conda-forge pyqgcpyqgc divides QGC messages into three categories, signified by the mode or msgmode parameter.
| mode | description | defined in |
|---|---|---|
| GET (0x00) | output from the receiver (the default) | qgctypes_get.py |
| SET (0x01) | command input to the receiver | qgctypes_set.py |
| POLL (0x02) | query input to the receiver | qgctypes_poll.py |
If you're simply streaming and/or parsing the output of a QGC receiver, the mode is implicitly GET. If you want to create
or parse an input (command or query) message, you must set the mode parameter to SET or POLL. If the parser mode is set to
0x03 (SETPOLL), pyqgc will automatically determine the applicable input mode (SET or POLL) based on the message payload. See examples below for usage.
class pyqgc.qgcreader.QGCReader(stream, *args, **kwargs)
You can create a QGCReader object by calling the constructor with an active stream object.
The stream object can be any viable data stream which supports a read(n) -> bytes method (e.g. File or Serial, with
or without a buffer wrapper). pyqgc implements an internal SocketWrapper class to allow sockets to be read in the same way as other streams (see example below).
Individual QGC messages can then be read using the QGCReader.read() function, which returns both the raw binary data (as bytes) and the parsed data (as a QGCMessage object, via the parse() method). The function is thread-safe in so far as the incoming data stream object is thread-safe. QGCReader also implements an iterator.
The constructor accepts the following optional keyword arguments:
protfilter:NMEA_PROTOCOL(1),QGC_PROTOCOL(2),RTCM3_PROTOCOL(4). Can be OR'd; default isNMEA_PROTOCOL | QGC_PROTOCOL | RTCM3_PROTOCOL(7)quitonerror:ERR_IGNORE(0) = ignore errors,ERR_LOG(1) = log errors and continue (default),ERR_RAISE(2) = (re)raise errors and terminatevalidate:VALCKSUM(0x01) = validate checksum (default),VALNONE(0x00) = ignore invalid checksum or lengthparsebitfield: 1 = parse bitfields ('X' type properties) as individual bit flags, where defined (default), 0 = leave bitfields as byte sequencesmsgmode:GET(0) (default),SET(1),POLL(2),SETPOLL(3) = automatically determine SET or POLL input mode
Example A - Serial input. This example will output both QGC and NMEA messages but not RTCM3, and log any errors:
from serial import Serial
from pyqgc import ERR_LOG, NMEA_PROTOCOL, QGC_PROTOCOL, VALCKSUM, QGCReader
with Serial("/dev/ttyACM0", 115200, timeout=3) as stream:
qgr = QGCReader(
stream,
protfilter=QGC_PROTOCOL | NMEA_PROTOCOL,
quitonerror=ERR_LOG,
validate=VALCKSUM,
parsebitfield=1,
)
raw_data, parsed_data = qgr.read()
if parsed_data is not None:
print(parsed_data)<QGC(RAW-PPPB2B, msgver=1, reserved1=0, prn=60, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
Example B - File input (using iterator). This will only output QGC data, and fail on any error:
from pyqgc import ERR_RAISE, QGC_PROTOCOL, VALCKSUM, QGCReader
with open("pygpsdata_lg580p_qgc.log", "rb") as stream:
qgr = QGCReader(
stream, protfilter=QGC_PROTOCOL, validate=VALCKSUM, quitonerror=ERR_RAISE
)
for raw_data, parsed_data in qgr:
print(parsed_data)<QGC(RAW-PPPB2B, msgver=1, reserved1=0, prn=60, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
<QGC(RAW-QZSSL6, msgver=1, reserved1=0, prn=195, rsstatus=1, msgtype=1, reserved2=0, msgdata=b'\x1a\xcf\xfc\x1d\xc3\xa9\x7f\x48\xab\x08\x92\x88\xc0\x3a\xa8\x40\x30\x02\x02\x93\xdf\xdf\xf5\xd5\xde\x43\x1c\x00\x00\x02\x04\x80\x04\x70\x00\x00\x00\x00\x82\x40\x7f\x49\xe8\x11\x08\x04\x7f\xed\x40\x0e\x9f\xe2\x01\x8b\x02\xb1\x02\x5c\x00\x5c\x06\x2f\xb1\x9f\xea\xbf\xea\xbf\xf6\x00\x5d\x07\x7b\xf1\x03\xe8\xa7\xf5\x10\x6e\xdf\xd2\x5a\x04\xa2\x3b\xfd\x0d\xfc\x40\x30\x0e\xfc\x5c\x02\x20\x0b\xc8\xbf\x0b\x03\x98\x0d\x60\x5f\x0a\x80\xd4\x03\x98\xbf\x68\xff\xdf\x03\x82\x87\xd5\x4f\xba\x01\x8c\xd7\xf0\x88\x4b\xfe\xd4\x31\xf4\x34\x08\xa0\x3a\x19\xfc\xe7\xf0\x10\x01\x17\x7c\x3a\xfd\xb8\x23\x04\xbf\xb5\x1f\xf2\xff\xe8\x93\xf7\x4c\x01\xc0\x04\x13\xbe\xd9\x00\x2b\xfe\xa2\x77\xde\xd0\x08\x7f\xd8\x4e\xfa\xbd\xff\x70\x03\x09\xdf\x89\xbf\xfa\x00\xca\x5f\xcd\x1f\xb5\xfd\xcd\x2f\xd1\xb0\x0d\xff\x8e\x97\xbf\x17\xf6\x80\x55\xfd\x29\xa0\x4a\x20\x01\xfe\x80\x28\x00\x05\xc0\xa7\xf3\x00\x15\x9c\xcd\xe1\x8b\xc4\xee\x2d\xe8\x5c\xd1\xf1\x28\xf9\xa2\x81\x83\xdf\xeb\x8e\x1b\x5f\xfe\x18\xf7\xd9\x21\x54\x33\x1c\x5c\x10')>
<QGC(RAW-HASE6, msgver=1, reserved1=0, prn=34, hasmode=1, msgtype=1, reserved2=0, page=2, reserved3=0, msgdata=b'\x38\xb2\x00\xe8\x50\xe9\xa0\x5e\x7f\xc6\x0d\x00\x31\xff\x2e\x00\x00\x5b\xfe\x50\x2c\xc0\xe1\x00\x00\x2f\x77\xe0\x0b\x20\xc6\xe5\x3f\x49\x79\xf0\x10\x50\x11\xf8\xcb\xeb\x7f\x31\x04\x67\xd0\x80\xf2\x05\xc0\x0e\x81\xb2\x00\xe8\x50\xe9\xa0\x5e\x7f\xc6\x0d\x00\x31\xff\x2e\x00\x00\x5b\xfe\x50\x2c\xc0\xe1\x00\x00\x2f\x77\xe0\x0b\x20\xc6\xe5\x3f\x49\x79\xf0\x10\x50\x11\xf8\xcb\xeb\x7f\x31\x04\x67\xd0\x80\xf2\x05\xc0\x0e\x81\xc8')>
Example C - Socket input (using iterator). This will output QGC, NMEA and RTCM3 data, and ignore any errors:
import socket
from pyqgc import (
ERR_IGNORE,
NMEA_PROTOCOL,
QGC_PROTOCOL,
RTCM3_PROTOCOL,
VALCKSUM,
QGCReader,
)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as stream:
stream.connect(("localhost", 50007))
qgr = QGCReader(stream, protfilter=NMEA_PROTOCOL | QGC_PROTOCOL | RTCM3_PROTOCOL, validate=VALCKSUM, quitonerror=ERR_IGNORE)
for raw_data, parsed_data in qgr:
print(parsed_data)<QGC(RAW-HASE6, msgver=1, reserved1=0, prn=34, hasmode=1, msgtype=1, reserved2=0, page=2, reserved3=0, msgdata=b'\x38\xb2\x00\xe8\x50\xe9\xa0\x5e\x7f\xc6\x0d\x00\x31\xff\x2e\x00\x00\x5b\xfe\x50\x2c\xc0\xe1\x00\x00\x2f\x77\xe0\x0b\x20\xc6\xe5\x3f\x49\x79\xf0\x10\x50\x11\xf8\xcb\xeb\x7f\x31\x04\x67\xd0\x80\xf2\x05\xc0\x0e\x81\xb2\x00\xe8\x50\xe9\xa0\x5e\x7f\xc6\x0d\x00\x31\xff\x2e\x00\x00\x5b\xfe\x50\x2c\xc0\xe1\x00\x00\x2f\x77\xe0\x0b\x20\xc6\xe5\x3f\x49\x79\xf0\x10\x50\x11\xf8\xcb\xeb\x7f\x31\x04\x67\xd0\x80\xf2\x05\xc0\x0e\x81\xc8')>
pyqgc.qgcreader.QGCReader.parse(message: bytes, **kwargs)
You can parse individual QGC messages using the static QGCReader.parse(data) function, which takes a bytes array containing a binary QGC message and returns a QGCMessage object.
NB: Once instantiated, a QGCMessage object is immutable.
The parse() method accepts the following optional keyword arguments:
msgmode:GET(0) (default),SET(1),POLL(2),SETPOLL(3) = automatically determine SET or POLL input modevalidate: VALCKSUM (0x01) = validate checksum (default), VALNONE (0x00) = ignore invalid checksum or lengthparsebitfield: 1 = parse bitfields ('X' type properties) as individual bit flags, where defined (default), 0 = leave bitfields as byte sequences
Example A - parsing RAW-PPPB2B output message:
from pyqgc import GET, VALCKSUM, QGCReader
msg = QGCReader.parse(
b"QG\n\xb2U\x00\x01\x00\x00\x00\x00<\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x105\xfcI\x04@\x01?w\x04\x00\x11\x00\x04@\x01\x10\x00D\x00\x11\x00\x05\x80\x00_k\x84\x00\x11\x00\x07}c\x10\x00x\x17\x0f\xfd\xd1\x02W\x10\x00D\x00\x11\x00\x04@\x01\x10\x00X\x7f\x00\x01\x816\xb0+\xc6",
msgmode=GET, # this is the default so could be omitted here
validate=VALCKSUM,
parsebitfield=1,
)
print(msg)<QGC(RAW-PPPB2B, msgver=1, reserved1=0, prn=60, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
The QGCMessage object exposes different public attributes depending on its message type or 'identity',
e.g. the RAW-PPPB2B message has the following attributes:
print(msg)
print(msg.identity)
print(msg.msgver)
print(msg.prn)<QGC(RAW-PPPB2B, msgver=1, reserved1=0, prn=60, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
RAW-PPPB2B
1
60
The payload attribute always contains the raw payload as bytes. Attributes within repeating groups are parsed with a two-digit suffix (svid_01, svid_02, etc.).
class pyqgc.qgcmessage.QGCMessage(msggrp, msgid, **kwargs)
You can create a QGCMessage object by calling the constructor with the following parameters:
- message group (must be a valid group from
pyqgc.QGC_MSGIDS) - message id (must be a valid id from
pqgc.QGC_MSGIDS) - (optional) a series of keyword parameters representing the message payload
- (optional)
parsebitfieldkeyword - 1 = define bitfields as individual bits (default), 0 = define bitfields as byte sequences
The 'message group' and 'message id' parameters must be passed as bytes.
The message payload can be defined via keyword arguments in one of three ways:
- A single keyword argument of
payloadcontaining the full payload as a sequence of bytes (any other keyword arguments will be ignored). NB thepayloadkeyword argument must be used for message types which have a 'variable by size' repeating group. - One or more keyword arguments corresponding to individual message attributes. Any attributes not explicitly provided as keyword arguments will be set to a nominal value according to their type.
- If no keyword arguments are passed, the payload is assumed to be null.
Example A - generate a CFG-UART SET (command) message from individual keyword arguments:
from pyqgc import QGCMessage, SET
msg = QGCMessage(
b"\x02",
b"\x01",
msgmode=SET, # remember to set msgmode=SET
intfid=1,
intfstatus=1,
baudrate=921600,
databit=8,
parity=0, # int values default to 0 so this could be omitted here
stopbit=1,
)
print(msg)<QGC(CFG-UART, intfid=1, intfstatus=1, reserved1=0, baudrate=921600, databit=8, parity=0, stopbit=1, reserved2=0)>
Example B - generate a INF-VER POLL (query) message from individual keyword arguments:
from pyqgc import QGCMessage, POLL
msg = QGCMessage(
b"\x06",
b"\x01",
msgmode=POLL, # remember to set msgmode=POLL
)
print(msg)<QGC(INF-VER)>
Example C - generate a RAW-PPPB2B GET (output) message from individual keyword arguments:
from pyqgc import QGCMessage, GET
msg = QGCMessage(
b"\x0a",
b"\xb2",
# msgmode=GET, # msgmode=GET is the default so can be omitted here
parsebitfield=1,
msgver=1,
prn=60,
pppstatus=0, # int values default to 0 so this could be omitted here
msgtype=0,
msgdata=b"\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0",
)
print(msg)<QGC(RAW-PPPB2B, msgver=1, reserved1=0, prn=60, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
The QGCMessage class implements a serialize() method to convert a QGCMessage object to a bytes array suitable for writing to an output stream.
e.g. to create and send a RAW-PPPB2B message:
from serial import Serial
from pyqgc import QGCMessage
serialOut = Serial('COM7', 115200, timeout=5)
print(msg)
output = msg.serialize()
print(output)
serialOut.write(output)<QGC(RAW-PPPB2B, msgver=0, reserved1=0, prn=0, pppstatus=0, msgtype=0, reserved2=0, msgdata=b'\x10\x35\xfc\x49\x04\x40\x01\x3f\x77\x04\x00\x11\x00\x04\x40\x01\x10\x00\x44\x00\x11\x00\x05\x80\x00\x5f\x6b\x84\x00\x11\x00\x07\x7d\x63\x10\x00\x78\x17\x0f\xfd\xd1\x02\x57\x10\x00\x44\x00\x11\x00\x04\x40\x01\x10\x00\x58\x7f\x00\x01\x81\x36\xb0')>
b'QG\n\xb2U\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x105\xfcI\x04@\x01?w\x04\x00\x11\x00\x04@\x01\x10\x00D\x00\x11\x00\x05\x80\x00_k\x84\x00\x11\x00\x07}c\x10\x00x\x17\x0f\xfd\xd1\x02W\x10\x00D\x00\x11\x00\x04@\x01\x10\x00X\x7f\x00\x01\x816\xb0\xee\xb1'
The following command line examples can be found in the \examples folder:
qgcusage.pyillustrates basic usage of theQGCMessageandQGCReaderclasses.
The QGC protocol is principally defined in the modules QGCtypes_*.py as a series of dictionaries. Message payload definitions must conform to the following rules:
1. attribute names must be unique within each message class
2. attribute types must be one of the valid types (S1, U2, X4, etc.)
3. if the attribute is scaled, attribute type is list of [attribute type as string (S1, U2, etc.), scaling factor as float] e.g. {"lat": [I4, 1e-7]}
4. repeating or bitfield groups must be defined as a tuple ('numr', {dict}), where:
'numr' is either:
a. an integer representing a fixed number of repeats e.g. 32
b. a string representing the name of a preceding attribute containing the number of repeats e.g. 'numCh'
c. an 'X' attribute type ('X1', 'X2', 'X4', etc) representing a group of individual bit flags
d. 'None' for a 'variable by size' repeating group. Only one such group is permitted per payload and it must be at the end.
{dict} is the nested dictionary of repeating items or bitfield group
Repeating attribute names are parsed with a two-digit suffix (svid_01, svid_02, etc.). Nested repeating groups are supported.
- If reading QGC data from a log file, check that the file.open() procedure is using the
rb(read binary) setting e.g.stream = open('QGCdata.log', 'rb').
pyqgc is maintained entirely by unpaid volunteers. It receives no funding from advertising or corporate sponsorship. If you find the utility useful, please consider sponsoring the project with the price of a coffee...


