Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_ddim_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_ddim_inverse.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_ddim_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
https://huggingface.co/papers/2210.02303)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_ddpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_ddpm_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
https://huggingface.co/papers/2210.02303)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_deis_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_dpm_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_dpmsolver_sde.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_edm_euler.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
rho (`float`, *optional*, defaults to 7.0):
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
final_sigmas_type (`str`, defaults to `"zero"`):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_euler_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*):
Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion
process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*):
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
`"linear"` or `"log_linear"`.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_euler_discrete_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
https://huggingface.co/papers/2210.02303)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_heun_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_lcm.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_lms_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_lms_discrete_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
https://huggingface.co/papers/2210.02303)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_pndm_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
https://huggingface.co/papers/2210.02303)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_sasolver.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
tau_func (`Callable`, *optional*):
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_tcd.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ class TCDScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/schedulers/scheduling_unipc_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
Expand Down