diff --git a/.ipynb_checkpoints/lab-hypothesis-testing-checkpoint.ipynb b/.ipynb_checkpoints/lab-hypothesis-testing-checkpoint.ipynb
new file mode 100644
index 0000000..6fe396f
--- /dev/null
+++ b/.ipynb_checkpoints/lab-hypothesis-testing-checkpoint.ipynb
@@ -0,0 +1,633 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Lab | Hypothesis Testing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Objective**\n",
+ "\n",
+ "Welcome to the Hypothesis Testing Lab, where we embark on an enlightening journey through the realm of statistical decision-making! In this laboratory, we delve into various scenarios, applying the powerful tools of hypothesis testing to scrutinize and interpret data.\n",
+ "\n",
+ "From testing the mean of a single sample (One Sample T-Test), to investigating differences between independent groups (Two Sample T-Test), and exploring relationships within dependent samples (Paired Sample T-Test), our exploration knows no bounds. Furthermore, we'll venture into the realm of Analysis of Variance (ANOVA), unraveling the complexities of comparing means across multiple groups.\n",
+ "\n",
+ "So, grab your statistical tools, prepare your hypotheses, and let's embark on this fascinating journey of exploration and discovery in the world of hypothesis testing!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Challenge 1**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this challenge, we will be working with pokemon data. The data can be found here:\n",
+ "\n",
+ "- https://raw.githubusercontent.com/data-bootcamp-v4/data/main/pokemon.csv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#libraries\n",
+ "import pandas as pd\n",
+ "import scipy.stats as st\n",
+ "import numpy as np\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Name | \n",
+ " Type 1 | \n",
+ " Type 2 | \n",
+ " HP | \n",
+ " Attack | \n",
+ " Defense | \n",
+ " Sp. Atk | \n",
+ " Sp. Def | \n",
+ " Speed | \n",
+ " Generation | \n",
+ " Legendary | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Bulbasaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 45 | \n",
+ " 49 | \n",
+ " 49 | \n",
+ " 65 | \n",
+ " 65 | \n",
+ " 45 | \n",
+ " 1 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Ivysaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 60 | \n",
+ " 62 | \n",
+ " 63 | \n",
+ " 80 | \n",
+ " 80 | \n",
+ " 60 | \n",
+ " 1 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Venusaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 80 | \n",
+ " 82 | \n",
+ " 83 | \n",
+ " 100 | \n",
+ " 100 | \n",
+ " 80 | \n",
+ " 1 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Mega Venusaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 80 | \n",
+ " 100 | \n",
+ " 123 | \n",
+ " 122 | \n",
+ " 120 | \n",
+ " 80 | \n",
+ " 1 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Charmander | \n",
+ " Fire | \n",
+ " NaN | \n",
+ " 39 | \n",
+ " 52 | \n",
+ " 43 | \n",
+ " 60 | \n",
+ " 50 | \n",
+ " 65 | \n",
+ " 1 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 795 | \n",
+ " Diancie | \n",
+ " Rock | \n",
+ " Fairy | \n",
+ " 50 | \n",
+ " 100 | \n",
+ " 150 | \n",
+ " 100 | \n",
+ " 150 | \n",
+ " 50 | \n",
+ " 6 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 796 | \n",
+ " Mega Diancie | \n",
+ " Rock | \n",
+ " Fairy | \n",
+ " 50 | \n",
+ " 160 | \n",
+ " 110 | \n",
+ " 160 | \n",
+ " 110 | \n",
+ " 110 | \n",
+ " 6 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 797 | \n",
+ " Hoopa Confined | \n",
+ " Psychic | \n",
+ " Ghost | \n",
+ " 80 | \n",
+ " 110 | \n",
+ " 60 | \n",
+ " 150 | \n",
+ " 130 | \n",
+ " 70 | \n",
+ " 6 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 798 | \n",
+ " Hoopa Unbound | \n",
+ " Psychic | \n",
+ " Dark | \n",
+ " 80 | \n",
+ " 160 | \n",
+ " 60 | \n",
+ " 170 | \n",
+ " 130 | \n",
+ " 80 | \n",
+ " 6 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 799 | \n",
+ " Volcanion | \n",
+ " Fire | \n",
+ " Water | \n",
+ " 80 | \n",
+ " 110 | \n",
+ " 120 | \n",
+ " 130 | \n",
+ " 90 | \n",
+ " 70 | \n",
+ " 6 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
800 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Name Type 1 Type 2 HP Attack Defense Sp. Atk Sp. Def \\\n",
+ "0 Bulbasaur Grass Poison 45 49 49 65 65 \n",
+ "1 Ivysaur Grass Poison 60 62 63 80 80 \n",
+ "2 Venusaur Grass Poison 80 82 83 100 100 \n",
+ "3 Mega Venusaur Grass Poison 80 100 123 122 120 \n",
+ "4 Charmander Fire NaN 39 52 43 60 50 \n",
+ ".. ... ... ... .. ... ... ... ... \n",
+ "795 Diancie Rock Fairy 50 100 150 100 150 \n",
+ "796 Mega Diancie Rock Fairy 50 160 110 160 110 \n",
+ "797 Hoopa Confined Psychic Ghost 80 110 60 150 130 \n",
+ "798 Hoopa Unbound Psychic Dark 80 160 60 170 130 \n",
+ "799 Volcanion Fire Water 80 110 120 130 90 \n",
+ "\n",
+ " Speed Generation Legendary \n",
+ "0 45 1 False \n",
+ "1 60 1 False \n",
+ "2 80 1 False \n",
+ "3 80 1 False \n",
+ "4 65 1 False \n",
+ ".. ... ... ... \n",
+ "795 50 6 True \n",
+ "796 110 6 True \n",
+ "797 70 6 True \n",
+ "798 80 6 True \n",
+ "799 70 6 True \n",
+ "\n",
+ "[800 rows x 11 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv(\"https://raw.githubusercontent.com/data-bootcamp-v4/data/main/pokemon.csv\")\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- We posit that Pokemons of type Dragon have, on average, more HP stats than Grass. Choose the propper test and, with 5% significance, comment your findings."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "t-statistic: 3.3349632905124063\n",
+ "p-value: 0.0007993609745420597\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Set the hypothesis\n",
+ "\n",
+ "#H0: mean Dragon HP = mean Grass HP\n",
+ "#H1: mean Dragon HP > mean Grass HP\n",
+ "\n",
+ "alpha = 0.05\n",
+ "\n",
+ "dragon_hp = df[df[\"Type 1\"] == \"Dragon\"][\"HP\"]\n",
+ "grass_hp = df[df[\"Type 1\"] == \"Grass\"][\"HP\"]\n",
+ "\n",
+ "t_stat, p_value = st.ttest_ind(dragon_hp, grass_hp, equal_var=False)\n",
+ "print(\"t-statistic:\", t_stat)\n",
+ "print(\"p-value:\", p_value / 2)\n",
+ "\n",
+ "# At the 5% significance level, we expect to reject the null hypothesis and conclude that Dragon-type Pokémon have, on average, significantly higher HP than Grass-type Pokémon."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- We posit that Legendary Pokemons have different stats (HP, Attack, Defense, Sp.Atk, Sp.Def, Speed) when comparing with Non-Legendary. Choose the propper test and, with 5% significance, comment your findings.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "HP: t=8.98, p=0.00000, Legendary mean=92.74, Non-Legendary mean=67.18\n",
+ "Attack: t=10.44, p=0.00000, Legendary mean=116.68, Non-Legendary mean=75.67\n",
+ "Defense: t=7.64, p=0.00000, Legendary mean=99.66, Non-Legendary mean=71.56\n",
+ "Sp. Atk: t=13.42, p=0.00000, Legendary mean=122.18, Non-Legendary mean=68.45\n",
+ "Sp. Def: t=10.02, p=0.00000, Legendary mean=105.94, Non-Legendary mean=68.89\n",
+ "Speed: t=11.48, p=0.00000, Legendary mean=100.18, Non-Legendary mean=65.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Hypotheses\n",
+ "# H0: Legendary and Non-Legendary Pokémon have the same distribution of stats.\n",
+ "# H1: At least one stat differs significantly between Legendary and Non-Legendary Pokémon.\n",
+ "\n",
+ "stats_cols = [\"HP\", \"Attack\", \"Defense\", \"Sp. Atk\", \"Sp. Def\", \"Speed\"]\n",
+ "\n",
+ "# Run Welch's t-test for each stat\n",
+ "for col in stats_cols:\n",
+ " legendary = df[df[\"Legendary\"] == True][col]\n",
+ " nonlegendary = df[df[\"Legendary\"] == False][col]\n",
+ " \n",
+ " t_stat, p_value = st.ttest_ind(legendary, nonlegendary, equal_var=False)\n",
+ " print(f\"{col}: t={t_stat:.2f}, p={p_value:.5f}, \"\n",
+ " f\"Legendary mean={legendary.mean():.2f}, Non-Legendary mean={nonlegendary.mean():.2f}\")\n",
+ "\n",
+ "# Legendary Pokémon usually have higher base stats across the board.\n",
+ "# There are significant differences in all six stats, with very small p-values."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Challenge 2**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this challenge, we will be working with california-housing data. The data can be found here:\n",
+ "- https://raw.githubusercontent.com/data-bootcamp-v4/data/main/california_housing.csv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " longitude | \n",
+ " latitude | \n",
+ " housing_median_age | \n",
+ " total_rooms | \n",
+ " total_bedrooms | \n",
+ " population | \n",
+ " households | \n",
+ " median_income | \n",
+ " median_house_value | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " -114.31 | \n",
+ " 34.19 | \n",
+ " 15.0 | \n",
+ " 5612.0 | \n",
+ " 1283.0 | \n",
+ " 1015.0 | \n",
+ " 472.0 | \n",
+ " 1.4936 | \n",
+ " 66900.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " -114.47 | \n",
+ " 34.40 | \n",
+ " 19.0 | \n",
+ " 7650.0 | \n",
+ " 1901.0 | \n",
+ " 1129.0 | \n",
+ " 463.0 | \n",
+ " 1.8200 | \n",
+ " 80100.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " -114.56 | \n",
+ " 33.69 | \n",
+ " 17.0 | \n",
+ " 720.0 | \n",
+ " 174.0 | \n",
+ " 333.0 | \n",
+ " 117.0 | \n",
+ " 1.6509 | \n",
+ " 85700.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " -114.57 | \n",
+ " 33.64 | \n",
+ " 14.0 | \n",
+ " 1501.0 | \n",
+ " 337.0 | \n",
+ " 515.0 | \n",
+ " 226.0 | \n",
+ " 3.1917 | \n",
+ " 73400.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " -114.57 | \n",
+ " 33.57 | \n",
+ " 20.0 | \n",
+ " 1454.0 | \n",
+ " 326.0 | \n",
+ " 624.0 | \n",
+ " 262.0 | \n",
+ " 1.9250 | \n",
+ " 65500.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " longitude latitude housing_median_age total_rooms total_bedrooms \\\n",
+ "0 -114.31 34.19 15.0 5612.0 1283.0 \n",
+ "1 -114.47 34.40 19.0 7650.0 1901.0 \n",
+ "2 -114.56 33.69 17.0 720.0 174.0 \n",
+ "3 -114.57 33.64 14.0 1501.0 337.0 \n",
+ "4 -114.57 33.57 20.0 1454.0 326.0 \n",
+ "\n",
+ " population households median_income median_house_value \n",
+ "0 1015.0 472.0 1.4936 66900.0 \n",
+ "1 1129.0 463.0 1.8200 80100.0 \n",
+ "2 333.0 117.0 1.6509 85700.0 \n",
+ "3 515.0 226.0 3.1917 73400.0 \n",
+ "4 624.0 262.0 1.9250 65500.0 "
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv(\"https://raw.githubusercontent.com/data-bootcamp-v4/data/main/california_housing.csv\")\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**We posit that houses close to either a school or a hospital are more expensive.**\n",
+ "\n",
+ "- School coordinates (-118, 34)\n",
+ "- Hospital coordinates (-122, 37)\n",
+ "\n",
+ "We consider a house (neighborhood) to be close to a school or hospital if the distance is lower than 0.50.\n",
+ "\n",
+ "Hint:\n",
+ "- Write a function to calculate euclidean distance from each house (neighborhood) to the school and to the hospital.\n",
+ "- Divide your dataset into houses close and far from either a hospital or school.\n",
+ "- Choose the propper test and, with 5% significance, comment your findings.\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Hypothesis\n",
+ "# We want to test whether houses close to a school or hospital (distance < 0.5) are more expensive.\n",
+ "\n",
+ "# H0: Mean house value (median_house_value) of close houses = mean of far houses.\n",
+ "# H1: Mean house value of close houses > mean of far houses."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "school = (-118, 34)\n",
+ "hospital = (-122, 37)\n",
+ "\n",
+ "def euclidean_distance(lon, lat, ref):\n",
+ " return np.sqrt((lon - ref[0])**2 + (lat - ref[1])**2)\n",
+ "\n",
+ "# Distances\n",
+ "df[\"dist_school\"] = euclidean_distance(df[\"longitude\"], df[\"latitude\"], school)\n",
+ "df[\"dist_hospital\"] = euclidean_distance(df[\"longitude\"], df[\"latitude\"], hospital)\n",
+ "\n",
+ "# Close if near either school or hospital\n",
+ "df[\"close\"] = ((df[\"dist_school\"] < 0.50) | (df[\"dist_hospital\"] < 0.50))\n",
+ "\n",
+ "# Groups\n",
+ "close_values = df[df[\"close\"]][\"median_house_value\"]\n",
+ "far_values = df[~df[\"close\"]][\"median_house_value\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "t-stat: 37.992330214201516\n",
+ "p-value (one-tailed): 1.5032478884296307e-301\n",
+ "Mean close: 246951.98213501245\n",
+ "Mean far: 180678.44105790975\n"
+ ]
+ }
+ ],
+ "source": [
+ "t_stat, p_value = st.ttest_ind(close_values, far_values, equal_var=False)\n",
+ "\n",
+ "# One-tailed (since hypothesis is directional: close > far)\n",
+ "if t_stat > 0:\n",
+ " p_value = p_value / 2\n",
+ "\n",
+ "print(\"t-stat:\", t_stat)\n",
+ "print(\"p-value (one-tailed):\", p_value)\n",
+ "print(\"Mean close:\", close_values.mean())\n",
+ "print(\"Mean far:\", far_values.mean())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#As p < 0.05 we reject H0. Evidence that houses closer to schools/hospitals are significantly more expensive."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [conda env:base] *",
+ "language": "python",
+ "name": "conda-base-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.13.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/lab-hypothesis-testing.ipynb b/lab-hypothesis-testing.ipynb
index 0cc26d5..6fe396f 100644
--- a/lab-hypothesis-testing.ipynb
+++ b/lab-hypothesis-testing.ipynb
@@ -51,7 +51,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
@@ -278,7 +278,7 @@
"[800 rows x 11 columns]"
]
},
- "execution_count": 3,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -297,11 +297,34 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "t-statistic: 3.3349632905124063\n",
+ "p-value: 0.0007993609745420597\n"
+ ]
+ }
+ ],
"source": [
- "#code here"
+ "#Set the hypothesis\n",
+ "\n",
+ "#H0: mean Dragon HP = mean Grass HP\n",
+ "#H1: mean Dragon HP > mean Grass HP\n",
+ "\n",
+ "alpha = 0.05\n",
+ "\n",
+ "dragon_hp = df[df[\"Type 1\"] == \"Dragon\"][\"HP\"]\n",
+ "grass_hp = df[df[\"Type 1\"] == \"Grass\"][\"HP\"]\n",
+ "\n",
+ "t_stat, p_value = st.ttest_ind(dragon_hp, grass_hp, equal_var=False)\n",
+ "print(\"t-statistic:\", t_stat)\n",
+ "print(\"p-value:\", p_value / 2)\n",
+ "\n",
+ "# At the 5% significance level, we expect to reject the null hypothesis and conclude that Dragon-type Pokémon have, on average, significantly higher HP than Grass-type Pokémon."
]
},
{
@@ -313,11 +336,40 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 7,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "HP: t=8.98, p=0.00000, Legendary mean=92.74, Non-Legendary mean=67.18\n",
+ "Attack: t=10.44, p=0.00000, Legendary mean=116.68, Non-Legendary mean=75.67\n",
+ "Defense: t=7.64, p=0.00000, Legendary mean=99.66, Non-Legendary mean=71.56\n",
+ "Sp. Atk: t=13.42, p=0.00000, Legendary mean=122.18, Non-Legendary mean=68.45\n",
+ "Sp. Def: t=10.02, p=0.00000, Legendary mean=105.94, Non-Legendary mean=68.89\n",
+ "Speed: t=11.48, p=0.00000, Legendary mean=100.18, Non-Legendary mean=65.46\n"
+ ]
+ }
+ ],
"source": [
- "#code here"
+ "# Hypotheses\n",
+ "# H0: Legendary and Non-Legendary Pokémon have the same distribution of stats.\n",
+ "# H1: At least one stat differs significantly between Legendary and Non-Legendary Pokémon.\n",
+ "\n",
+ "stats_cols = [\"HP\", \"Attack\", \"Defense\", \"Sp. Atk\", \"Sp. Def\", \"Speed\"]\n",
+ "\n",
+ "# Run Welch's t-test for each stat\n",
+ "for col in stats_cols:\n",
+ " legendary = df[df[\"Legendary\"] == True][col]\n",
+ " nonlegendary = df[df[\"Legendary\"] == False][col]\n",
+ " \n",
+ " t_stat, p_value = st.ttest_ind(legendary, nonlegendary, equal_var=False)\n",
+ " print(f\"{col}: t={t_stat:.2f}, p={p_value:.5f}, \"\n",
+ " f\"Legendary mean={legendary.mean():.2f}, Non-Legendary mean={nonlegendary.mean():.2f}\")\n",
+ "\n",
+ "# Legendary Pokémon usually have higher base stats across the board.\n",
+ "# There are significant differences in all six stats, with very small p-values."
]
},
{
@@ -337,7 +389,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -453,7 +505,7 @@
"4 624.0 262.0 1.9250 65500.0 "
]
},
- "execution_count": 5,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -486,21 +538,82 @@
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "# Hypothesis\n",
+ "# We want to test whether houses close to a school or hospital (distance < 0.5) are more expensive.\n",
+ "\n",
+ "# H0: Mean house value (median_house_value) of close houses = mean of far houses.\n",
+ "# H1: Mean house value of close houses > mean of far houses."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "school = (-118, 34)\n",
+ "hospital = (-122, 37)\n",
+ "\n",
+ "def euclidean_distance(lon, lat, ref):\n",
+ " return np.sqrt((lon - ref[0])**2 + (lat - ref[1])**2)\n",
+ "\n",
+ "# Distances\n",
+ "df[\"dist_school\"] = euclidean_distance(df[\"longitude\"], df[\"latitude\"], school)\n",
+ "df[\"dist_hospital\"] = euclidean_distance(df[\"longitude\"], df[\"latitude\"], hospital)\n",
+ "\n",
+ "# Close if near either school or hospital\n",
+ "df[\"close\"] = ((df[\"dist_school\"] < 0.50) | (df[\"dist_hospital\"] < 0.50))\n",
+ "\n",
+ "# Groups\n",
+ "close_values = df[df[\"close\"]][\"median_house_value\"]\n",
+ "far_values = df[~df[\"close\"]][\"median_house_value\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "t-stat: 37.992330214201516\n",
+ "p-value (one-tailed): 1.5032478884296307e-301\n",
+ "Mean close: 246951.98213501245\n",
+ "Mean far: 180678.44105790975\n"
+ ]
+ }
+ ],
+ "source": [
+ "t_stat, p_value = st.ttest_ind(close_values, far_values, equal_var=False)\n",
+ "\n",
+ "# One-tailed (since hypothesis is directional: close > far)\n",
+ "if t_stat > 0:\n",
+ " p_value = p_value / 2\n",
+ "\n",
+ "print(\"t-stat:\", t_stat)\n",
+ "print(\"p-value (one-tailed):\", p_value)\n",
+ "print(\"Mean close:\", close_values.mean())\n",
+ "print(\"Mean far:\", far_values.mean())"
+ ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "#As p < 0.05 we reject H0. Evidence that houses closer to schools/hospitals are significantly more expensive."
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python [conda env:base] *",
"language": "python",
- "name": "python3"
+ "name": "conda-base-py"
},
"language_info": {
"codemirror_mode": {
@@ -512,9 +625,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.9"
+ "version": "3.13.5"
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
}