diff --git a/lab-dw-aggregating.ipynb b/lab-dw-aggregating.ipynb index fadd718..3b01b6b 100644 --- a/lab-dw-aggregating.ipynb +++ b/lab-dw-aggregating.ipynb @@ -127,15 +127,1274 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "449513f4-0459-46a0-a18d-9398d974c9ad", "metadata": { "id": "449513f4-0459-46a0-a18d-9398d974c9ad" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0CustomerStateCustomer Lifetime ValueResponseCoverageEducationEffective To DateEmploymentStatusGender...Number of Open ComplaintsNumber of PoliciesPolicy TypePolicyRenew Offer TypeSales ChannelTotal Claim AmountVehicle ClassVehicle SizeVehicle Type
00DK49336Arizona4809.216960NoBasicCollege2/18/11EmployedM...0.09Corporate AutoCorporate L3Offer3Agent292.800000Four-Door CarMedsizeNaN
11KX64629California2228.525238NoBasicCollege1/18/11UnemployedF...0.01Personal AutoPersonal L3Offer4Call Center744.924331Four-Door CarMedsizeNaN
22LZ68649Washington14947.917300NoBasicBachelor2/10/11EmployedM...0.02Personal AutoPersonal L3Offer3Call Center480.000000SUVMedsizeA
33XL78013Oregon22332.439460YesExtendedCollege1/11/11EmployedM...0.02Corporate AutoCorporate L3Offer2Branch484.013411Four-Door CarMedsizeA
44QA50777Oregon9025.067525NoPremiumBachelor1/17/11Medical LeaveF...NaN7Personal AutoPersonal L2Offer1Branch707.925645Four-Door CarMedsizeNaN
..................................................................
1090510905FE99816Nevada15563.369440NoPremiumBachelor1/19/11UnemployedF...NaN7Personal AutoPersonal L1Offer3Web1214.400000Luxury CarMedsizeA
1090610906KX53892Oregon5259.444853NoBasicCollege1/6/11EmployedF...0.06Personal AutoPersonal L3Offer2Branch273.018929Four-Door CarMedsizeA
1090710907TL39050Arizona23893.304100NoExtendedBachelor2/6/11EmployedF...0.02Corporate AutoCorporate L3Offer1Web381.306996Luxury SUVMedsizeNaN
1090810908WA60547California11971.977650NoPremiumCollege2/13/11EmployedF...4.06Personal AutoPersonal L1Offer1Branch618.288849SUVMedsizeA
1090910909IV32877NaN6857.519928NaNBasicBachelor1/8/11UnemployedM...0.03Personal AutoPersonal L1Offer4Web1021.719397SUVMedsizeNaN
\n", + "

10910 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Customer State Customer Lifetime Value Response \\\n", + "0 0 DK49336 Arizona 4809.216960 No \n", + "1 1 KX64629 California 2228.525238 No \n", + "2 2 LZ68649 Washington 14947.917300 No \n", + "3 3 XL78013 Oregon 22332.439460 Yes \n", + "4 4 QA50777 Oregon 9025.067525 No \n", + "... ... ... ... ... ... \n", + "10905 10905 FE99816 Nevada 15563.369440 No \n", + "10906 10906 KX53892 Oregon 5259.444853 No \n", + "10907 10907 TL39050 Arizona 23893.304100 No \n", + "10908 10908 WA60547 California 11971.977650 No \n", + "10909 10909 IV32877 NaN 6857.519928 NaN \n", + "\n", + " Coverage Education Effective To Date EmploymentStatus Gender ... \\\n", + "0 Basic College 2/18/11 Employed M ... \n", + "1 Basic College 1/18/11 Unemployed F ... \n", + "2 Basic Bachelor 2/10/11 Employed M ... \n", + "3 Extended College 1/11/11 Employed M ... \n", + "4 Premium Bachelor 1/17/11 Medical Leave F ... \n", + "... ... ... ... ... ... ... \n", + "10905 Premium Bachelor 1/19/11 Unemployed F ... \n", + "10906 Basic College 1/6/11 Employed F ... \n", + "10907 Extended Bachelor 2/6/11 Employed F ... \n", + "10908 Premium College 2/13/11 Employed F ... \n", + "10909 Basic Bachelor 1/8/11 Unemployed M ... \n", + "\n", + " Number of Open Complaints Number of Policies Policy Type \\\n", + "0 0.0 9 Corporate Auto \n", + "1 0.0 1 Personal Auto \n", + "2 0.0 2 Personal Auto \n", + "3 0.0 2 Corporate Auto \n", + "4 NaN 7 Personal Auto \n", + "... ... ... ... \n", + "10905 NaN 7 Personal Auto \n", + "10906 0.0 6 Personal Auto \n", + "10907 0.0 2 Corporate Auto \n", + "10908 4.0 6 Personal Auto \n", + "10909 0.0 3 Personal Auto \n", + "\n", + " Policy Renew Offer Type Sales Channel Total Claim Amount \\\n", + "0 Corporate L3 Offer3 Agent 292.800000 \n", + "1 Personal L3 Offer4 Call Center 744.924331 \n", + "2 Personal L3 Offer3 Call Center 480.000000 \n", + "3 Corporate L3 Offer2 Branch 484.013411 \n", + "4 Personal L2 Offer1 Branch 707.925645 \n", + "... ... ... ... ... \n", + "10905 Personal L1 Offer3 Web 1214.400000 \n", + "10906 Personal L3 Offer2 Branch 273.018929 \n", + "10907 Corporate L3 Offer1 Web 381.306996 \n", + "10908 Personal L1 Offer1 Branch 618.288849 \n", + "10909 Personal L1 Offer4 Web 1021.719397 \n", + "\n", + " Vehicle Class Vehicle Size Vehicle Type \n", + "0 Four-Door Car Medsize NaN \n", + "1 Four-Door Car Medsize NaN \n", + "2 SUV Medsize A \n", + "3 Four-Door Car Medsize A \n", + "4 Four-Door Car Medsize NaN \n", + "... ... ... ... \n", + "10905 Luxury Car Medsize A \n", + "10906 Four-Door Car Medsize A \n", + "10907 Luxury SUV Medsize NaN \n", + "10908 SUV Medsize A \n", + "10909 SUV Medsize NaN \n", + "\n", + "[10910 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "url = \"https://raw.githubusercontent.com/data-bootcamp-v4/data/main/marketing_customer_analysis.csv\"\n", + "df = pd.read_csv(url)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "323b29ef", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Unnamed: 0', 'Customer', 'State', 'Customer Lifetime Value',\n", + " 'Response', 'Coverage', 'Education', 'Effective To Date',\n", + " 'EmploymentStatus', 'Gender', 'Income', 'Location Code',\n", + " 'Marital Status', 'Monthly Premium Auto', 'Months Since Last Claim',\n", + " 'Months Since Policy Inception', 'Number of Open Complaints',\n", + " 'Number of Policies', 'Policy Type', 'Policy', 'Renew Offer Type',\n", + " 'Sales Channel', 'Total Claim Amount', 'Vehicle Class', 'Vehicle Size',\n", + " 'Vehicle Type'],\n", + " dtype='object')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "8f119a43", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0CustomerStateCustomer Lifetime ValueResponseCoverageEducationEffective To DateEmploymentStatusGender...Number of Open ComplaintsNumber of PoliciesPolicy TypePolicyRenew Offer TypeSales ChannelTotal Claim AmountVehicle ClassVehicle SizeVehicle Type
33XL78013Oregon22332.439460YesExtendedCollege1/11/11EmployedM...0.02Corporate AutoCorporate L3Offer2Branch484.013411Four-Door CarMedsizeA
88FM55990California5989.773931YesPremiumCollege1/19/11EmployedM...0.01Personal AutoPersonal L1Offer2Branch739.200000Sports CarMedsizeNaN
1515CW49887California4626.801093YesBasicMaster1/16/11EmployedF...0.01Special AutoSpecial L1Offer2Branch547.200000SUVMedsizeNaN
1919NJ54277California3746.751625YesExtendedCollege2/26/11EmployedF...1.01Personal AutoPersonal L2Offer2Call Center19.575683Two-Door CarLargeA
2727MQ68407Oregon4376.363592YesPremiumBachelor2/28/11EmployedF...0.01Personal AutoPersonal L3Offer2Agent60.036683Four-Door CarMedsizeNaN
..................................................................
1084410844FM31768Arizona5979.724161YesExtendedHigh School or Below2/7/11EmployedF...0.03Personal AutoPersonal L1Offer2Agent547.200000Four-Door CarMedsizeNaN
1085210852KZ80424Washington8382.478392YesBasicBachelor1/27/11EmployedM...0.02Personal AutoPersonal L2Offer2Call Center791.878042NaNNaNA
1087210872XT67997California5979.724161YesExtendedHigh School or Below2/7/11EmployedF...0.03Personal AutoPersonal L3Offer2Agent547.200000Four-Door CarMedsizeNaN
1088710887BY78730Oregon8879.790017YesBasicHigh School or Below2/3/11EmployedF...0.07Special AutoSpecial L2Offer1Agent528.200860SUVSmallA
1089710897MM70762Arizona9075.768214YesBasicMaster1/26/11EmployedM...0.08Personal AutoPersonal L1Offer1Agent158.077504Sports CarMedsizeA
\n", + "

1399 rows × 26 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Customer State Customer Lifetime Value Response \\\n", + "3 3 XL78013 Oregon 22332.439460 Yes \n", + "8 8 FM55990 California 5989.773931 Yes \n", + "15 15 CW49887 California 4626.801093 Yes \n", + "19 19 NJ54277 California 3746.751625 Yes \n", + "27 27 MQ68407 Oregon 4376.363592 Yes \n", + "... ... ... ... ... ... \n", + "10844 10844 FM31768 Arizona 5979.724161 Yes \n", + "10852 10852 KZ80424 Washington 8382.478392 Yes \n", + "10872 10872 XT67997 California 5979.724161 Yes \n", + "10887 10887 BY78730 Oregon 8879.790017 Yes \n", + "10897 10897 MM70762 Arizona 9075.768214 Yes \n", + "\n", + " Coverage Education Effective To Date EmploymentStatus \\\n", + "3 Extended College 1/11/11 Employed \n", + "8 Premium College 1/19/11 Employed \n", + "15 Basic Master 1/16/11 Employed \n", + "19 Extended College 2/26/11 Employed \n", + "27 Premium Bachelor 2/28/11 Employed \n", + "... ... ... ... ... \n", + "10844 Extended High School or Below 2/7/11 Employed \n", + "10852 Basic Bachelor 1/27/11 Employed \n", + "10872 Extended High School or Below 2/7/11 Employed \n", + "10887 Basic High School or Below 2/3/11 Employed \n", + "10897 Basic Master 1/26/11 Employed \n", + "\n", + " Gender ... Number of Open Complaints Number of Policies \\\n", + "3 M ... 0.0 2 \n", + "8 M ... 0.0 1 \n", + "15 F ... 0.0 1 \n", + "19 F ... 1.0 1 \n", + "27 F ... 0.0 1 \n", + "... ... ... ... ... \n", + "10844 F ... 0.0 3 \n", + "10852 M ... 0.0 2 \n", + "10872 F ... 0.0 3 \n", + "10887 F ... 0.0 7 \n", + "10897 M ... 0.0 8 \n", + "\n", + " Policy Type Policy Renew Offer Type Sales Channel \\\n", + "3 Corporate Auto Corporate L3 Offer2 Branch \n", + "8 Personal Auto Personal L1 Offer2 Branch \n", + "15 Special Auto Special L1 Offer2 Branch \n", + "19 Personal Auto Personal L2 Offer2 Call Center \n", + "27 Personal Auto Personal L3 Offer2 Agent \n", + "... ... ... ... ... \n", + "10844 Personal Auto Personal L1 Offer2 Agent \n", + "10852 Personal Auto Personal L2 Offer2 Call Center \n", + "10872 Personal Auto Personal L3 Offer2 Agent \n", + "10887 Special Auto Special L2 Offer1 Agent \n", + "10897 Personal Auto Personal L1 Offer1 Agent \n", + "\n", + " Total Claim Amount Vehicle Class Vehicle Size Vehicle Type \n", + "3 484.013411 Four-Door Car Medsize A \n", + "8 739.200000 Sports Car Medsize NaN \n", + "15 547.200000 SUV Medsize NaN \n", + "19 19.575683 Two-Door Car Large A \n", + "27 60.036683 Four-Door Car Medsize NaN \n", + "... ... ... ... ... \n", + "10844 547.200000 Four-Door Car Medsize NaN \n", + "10852 791.878042 NaN NaN A \n", + "10872 547.200000 Four-Door Car Medsize NaN \n", + "10887 528.200860 SUV Small A \n", + "10897 158.077504 Sports Car Medsize A \n", + "\n", + "[1399 rows x 26 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = df[(df['Total Claim Amount'] < 1000)&(df['Response']==\"Yes\")]\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2282eae7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Policy TypeGenderMonthly Premium AutoCustomer Lifetime ValueTotal Claim Amount
0Corporate AutoF94.3017757712.628736433.738499
1Corporate AutoM92.1883127944.465414408.582459
2Personal AutoF98.9981488339.791842452.965929
3Personal AutoM91.0858217448.383281457.010178
4Special AutoF92.3142867691.584111453.280164
5Special AutoM86.3437508247.088702429.527942
\n", + "
" + ], + "text/plain": [ + " Policy Type Gender Monthly Premium Auto Customer Lifetime Value \\\n", + "0 Corporate Auto F 94.301775 7712.628736 \n", + "1 Corporate Auto M 92.188312 7944.465414 \n", + "2 Personal Auto F 98.998148 8339.791842 \n", + "3 Personal Auto M 91.085821 7448.383281 \n", + "4 Special Auto F 92.314286 7691.584111 \n", + "5 Special Auto M 86.343750 8247.088702 \n", + "\n", + " Total Claim Amount \n", + "0 433.738499 \n", + "1 408.582459 \n", + "2 452.965929 \n", + "3 457.010178 \n", + "4 453.280164 \n", + "5 429.527942 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "responded_df = df[df['Response'] == \"Yes\"]\n", + "\n", + "agg_results = responded_df.groupby(['Policy Type', 'Gender']).agg({\n", + " 'Monthly Premium Auto': 'mean',\n", + " 'Customer Lifetime Value': 'mean',\n", + " 'Total Claim Amount': 'mean'\n", + "}).reset_index()\n", + "\n", + "agg_results" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a7bef980", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StateCustomer_Count
0Arizona1937
1California3552
2Nevada993
3Oregon2909
4Washington888
\n", + "
" + ], + "text/plain": [ + " State Customer_Count\n", + "0 Arizona 1937\n", + "1 California 3552\n", + "2 Nevada 993\n", + "3 Oregon 2909\n", + "4 Washington 888" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "state_counts = df.groupby('State')['Customer'].count().reset_index()\n", + "\n", + "state_counts.columns = ['State', 'Customer_Count']\n", + "\n", + "large_states = state_counts[state_counts['Customer_Count'] > 500] \\\n", + " .sort_values(by='Customer_Count', ascending=False)\n", + "\n", + "state_counts.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "a74834d3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StateCustomer_Count
1California3552
3Oregon2909
0Arizona1937
2Nevada993
4Washington888
\n", + "
" + ], + "text/plain": [ + " State Customer_Count\n", + "1 California 3552\n", + "3 Oregon 2909\n", + "0 Arizona 1937\n", + "2 Nevada 993\n", + "4 Washington 888" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# your code goes here" + "large_states" ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2e05d821", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EducationGendermaxminmedian
0BachelorF73225.956521904.0008525640.505303
1BachelorM67907.270501898.0076755548.031892
2CollegeF61850.188031898.6836865623.611187
3CollegeM61134.683071918.1197006005.847375
4DoctorF44856.113972395.5700005332.462694
5DoctorM32677.342842267.6040385577.669457
6High School or BelowF55277.445892144.9215356039.553187
7High School or BelowM83325.381191940.9812216286.731006
8MasterF51016.067042417.7770325729.855012
9MasterM50568.259122272.3073105579.099207
\n", + "
" + ], + "text/plain": [ + " Education Gender max min median\n", + "0 Bachelor F 73225.95652 1904.000852 5640.505303\n", + "1 Bachelor M 67907.27050 1898.007675 5548.031892\n", + "2 College F 61850.18803 1898.683686 5623.611187\n", + "3 College M 61134.68307 1918.119700 6005.847375\n", + "4 Doctor F 44856.11397 2395.570000 5332.462694\n", + "5 Doctor M 32677.34284 2267.604038 5577.669457\n", + "6 High School or Below F 55277.44589 2144.921535 6039.553187\n", + "7 High School or Below M 83325.38119 1940.981221 6286.731006\n", + "8 Master F 51016.06704 2417.777032 5729.855012\n", + "9 Master M 50568.25912 2272.307310 5579.099207" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clv_stats = df.groupby(['Education', 'Gender'])['Customer Lifetime Value'].agg(['max', 'min', 'median']).reset_index()\n", + "\n", + "clv_stats" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "952ffaba", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -143,7 +1402,7 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "base", "language": "python", "name": "python3" }, @@ -157,7 +1416,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.12.7" } }, "nbformat": 4,