@@ -68,7 +68,7 @@ open import Data.Product using (_,_)
6868
6969∧-identityʳ : RightIdentity ⊤ _∧_
7070∧-identityʳ x = begin
71- x ∧ ⊤ ≈⟨ ∧-congʳ (sym (∨-complementʳ _)) ⟩
71+ x ∧ ⊤ ≈⟨ ∧-congˡ (sym (∨-complementʳ _)) ⟩
7272 x ∧ (x ∨ ¬ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩
7373 x ∎
7474
@@ -80,7 +80,7 @@ open import Data.Product using (_,_)
8080
8181∨-identityʳ : RightIdentity ⊥ _∨_
8282∨-identityʳ x = begin
83- x ∨ ⊥ ≈⟨ ∨-congʳ $ sym (∧-complementʳ _) ⟩
83+ x ∨ ⊥ ≈⟨ ∨-congˡ $ sym (∧-complementʳ _) ⟩
8484 x ∨ x ∧ ¬ x ≈⟨ ∨-absorbs-∧ _ _ ⟩
8585 x ∎
8686
@@ -92,9 +92,9 @@ open import Data.Product using (_,_)
9292
9393∧-zeroʳ : RightZero ⊥ _∧_
9494∧-zeroʳ x = begin
95- x ∧ ⊥ ≈⟨ ∧-congʳ $ sym (∧-complementʳ _) ⟩
95+ x ∧ ⊥ ≈⟨ ∧-congˡ $ sym (∧-complementʳ _) ⟩
9696 x ∧ x ∧ ¬ x ≈˘⟨ ∧-assoc _ _ _ ⟩
97- (x ∧ x) ∧ ¬ x ≈⟨ ∧-congˡ $ ∧-idempotent _ ⟩
97+ (x ∧ x) ∧ ¬ x ≈⟨ ∧-congʳ $ ∧-idempotent _ ⟩
9898 x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩
9999 ⊥ ∎
100100
@@ -106,9 +106,9 @@ open import Data.Product using (_,_)
106106
107107∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤
108108∨-zeroʳ x = begin
109- x ∨ ⊤ ≈⟨ ∨-congʳ $ sym (∨-complementʳ _) ⟩
109+ x ∨ ⊤ ≈⟨ ∨-congˡ $ sym (∨-complementʳ _) ⟩
110110 x ∨ x ∨ ¬ x ≈˘⟨ ∨-assoc _ _ _ ⟩
111- (x ∨ x) ∨ ¬ x ≈⟨ ∨-congˡ $ ∨-idempotent _ ⟩
111+ (x ∨ x) ∨ ¬ x ≈⟨ ∨-congʳ $ ∨-idempotent _ ⟩
112112 x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩
113113 ⊤ ∎
114114
@@ -213,12 +213,12 @@ private
213213 lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y
214214 lemma x y x∧y=⊥ x∨y=⊤ = begin
215215 ¬ x ≈˘⟨ ∧-identityʳ _ ⟩
216- ¬ x ∧ ⊤ ≈˘⟨ ∧-congʳ x∨y=⊤ ⟩
216+ ¬ x ∧ ⊤ ≈˘⟨ ∧-congˡ x∨y=⊤ ⟩
217217 ¬ x ∧ (x ∨ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
218- ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congˡ $ ∧-complementˡ _ ⟩
219- ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congˡ x∧y=⊥ ⟩
218+ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congʳ $ ∧-complementˡ _ ⟩
219+ ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congʳ x∧y=⊥ ⟩
220220 x ∧ y ∨ ¬ x ∧ y ≈˘⟨ ∧-∨-distribʳ _ _ _ ⟩
221- (x ∨ ¬ x) ∧ y ≈⟨ ∧-congˡ $ ∨-complementʳ _ ⟩
221+ (x ∨ ¬ x) ∧ y ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
222222 ⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩
223223 y ∎
224224
@@ -236,26 +236,26 @@ deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂
236236 where
237237 lem₁ = begin
238238 (x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
239- (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congˡ $ ∧-congˡ $ ∧-comm _ _ ⟩
239+ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congʳ $ ∧-congʳ $ ∧-comm _ _ ⟩
240240 (y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩
241- y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congʳ $ ∧-complementʳ _) ⟨ ∨-cong ⟩
242- (∧-congʳ $ ∧-complementʳ _) ⟩
241+ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congˡ $ ∧-complementʳ _) ⟨ ∨-cong ⟩
242+ (∧-congˡ $ ∧-complementʳ _) ⟩
243243 (y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩
244244 ⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩
245245 ⊥ ∎
246246
247247 lem₃ = begin
248248 (x ∧ y) ∨ ¬ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩
249- (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congˡ $ ∨-complementʳ _ ⟩
249+ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩
250250 ⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩
251251 y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩
252252 ¬ x ∨ y ∎
253253
254254 lem₂ = begin
255255 (x ∧ y) ∨ (¬ x ∨ ¬ y) ≈˘⟨ ∨-assoc _ _ _ ⟩
256- ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congˡ lem₃ ⟩
256+ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congʳ lem₃ ⟩
257257 (¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩
258- ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congʳ $ ∨-complementʳ _ ⟩
258+ ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congˡ $ ∨-complementʳ _ ⟩
259259 ¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩
260260 ⊤ ∎
261261
@@ -325,19 +325,19 @@ module XorRing
325325 ⊕-¬-distribˡ x y = begin
326326 ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩
327327 ¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (∧-∨-distribʳ _ _ _) ⟩
328- ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congʳ $ ∧-congʳ $ ¬-cong (∧-comm _ _) ⟩
328+ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congˡ $ ∧-congˡ $ ¬-cong (∧-comm _ _) ⟩
329329 ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩
330330 ¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩
331- ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
332- (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congʳ $ ¬-involutive _) (∧-comm _ _) ⟩
331+ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
332+ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congˡ $ ¬-involutive _) (∧-comm _ _) ⟩
333333 (¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈˘⟨ ⊕-def _ _ ⟩
334334 ¬ x ⊕ y ∎
335335 where
336336 lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y
337337 lem x y = begin
338- x ∧ ¬ (x ∧ y) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
338+ x ∧ ¬ (x ∧ y) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
339339 x ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
340- (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congˡ $ ∧-complementʳ _ ⟩
340+ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congʳ $ ∧-complementʳ _ ⟩
341341 ⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩
342342 x ∧ ¬ y ∎
343343
@@ -359,7 +359,7 @@ module XorRing
359359 ⊕-identityˡ x = begin
360360 ⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩
361361 (⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩
362- x ∧ ¬ ⊥ ≈⟨ ∧-congʳ ¬⊥=⊤ ⟩
362+ x ∧ ¬ ⊥ ≈⟨ ∧-congˡ ¬⊥=⊤ ⟩
363363 x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩
364364 x ∎
365365
@@ -384,45 +384,45 @@ module XorRing
384384
385385 ∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_
386386 ∧-distribˡ-⊕ x y z = begin
387- x ∧ (y ⊕ z) ≈⟨ ∧-congʳ $ ⊕-def _ _ ⟩
387+ x ∧ (y ⊕ z) ≈⟨ ∧-congˡ $ ⊕-def _ _ ⟩
388388 x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
389- (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩
389+ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩
390390 (x ∧ (y ∨ z)) ∧
391391 (¬ y ∨ ¬ z) ≈˘⟨ ∨-identityˡ _ ⟩
392392 ⊥ ∨
393393 ((x ∧ (y ∨ z)) ∧
394- (¬ y ∨ ¬ z)) ≈⟨ ∨-congˡ lem₃ ⟩
394+ (¬ y ∨ ¬ z)) ≈⟨ ∨-congʳ lem₃ ⟩
395395 ((x ∧ (y ∨ z)) ∧ ¬ x) ∨
396396 ((x ∧ (y ∨ z)) ∧
397397 (¬ y ∨ ¬ z)) ≈˘⟨ ∧-∨-distribˡ _ _ _ ⟩
398398 (x ∧ (y ∨ z)) ∧
399- (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congʳ $ ∨-congʳ (deMorgan₁ _ _) ⟩
399+ (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congˡ $ ∨-congˡ (deMorgan₁ _ _) ⟩
400400 (x ∧ (y ∨ z)) ∧
401- (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congʳ (deMorgan₁ _ _) ⟩
401+ (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congˡ (deMorgan₁ _ _) ⟩
402402 (x ∧ (y ∨ z)) ∧
403403 ¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩
404404 (x ∧ (y ∨ z)) ∧
405- ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congˡ $ ∧-∨-distribˡ _ _ _ ⟩
405+ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congʳ $ ∧-∨-distribˡ _ _ _ ⟩
406406 ((x ∧ y) ∨ (x ∧ z)) ∧
407407 ¬ ((x ∧ y) ∧ (x ∧ z)) ≈˘⟨ ⊕-def _ _ ⟩
408408 (x ∧ y) ⊕ (x ∧ z) ∎
409409 where
410410 lem₂ = begin
411411 x ∧ (y ∧ z) ≈˘⟨ ∧-assoc _ _ _ ⟩
412- (x ∧ y) ∧ z ≈⟨ ∧-congˡ $ ∧-comm _ _ ⟩
412+ (x ∧ y) ∧ z ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
413413 (y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩
414414 y ∧ (x ∧ z) ∎
415415
416416 lem₁ = begin
417- x ∧ (y ∧ z) ≈˘⟨ ∧-congˡ (∧-idempotent _) ⟩
417+ x ∧ (y ∧ z) ≈˘⟨ ∧-congʳ (∧-idempotent _) ⟩
418418 (x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩
419- x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congʳ lem₂ ⟩
419+ x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congˡ lem₂ ⟩
420420 x ∧ (y ∧ (x ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
421421 (x ∧ y) ∧ (x ∧ z) ∎
422422
423423 lem₃ = begin
424424 ⊥ ≈˘⟨ ∧-zeroʳ _ ⟩
425- (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congʳ (∧-complementʳ _) ⟩
425+ (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ _) ⟩
426426 (y ∨ z) ∧ (x ∧ ¬ x) ≈˘⟨ ∧-assoc _ _ _ ⟩
427427 ((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩
428428 (x ∧ (y ∨ z)) ∧ ¬ x ∎
@@ -457,7 +457,7 @@ module XorRing
457457 (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩
458458 ((x ∨ y) ∨ z) ∧
459459 (((x ∨ ¬ y) ∨ ¬ z) ∧
460- (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congʳ lem₅ ⟩
460+ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congˡ lem₅ ⟩
461461 ((x ∨ y) ∨ z) ∧
462462 (((¬ x ∨ ¬ y) ∨ z) ∧
463463 (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈˘⟨ ∧-assoc _ _ _ ⟩
@@ -470,14 +470,14 @@ module XorRing
470470 where
471471 lem₁ = begin
472472 ((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩
473- ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congˡ $ ∧-congʳ (deMorgan₁ _ _) ⟩
473+ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩
474474 ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎
475475
476476 lem₂' = begin
477477 (x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
478478 (⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
479479 ⟨ ∧-cong ⟩
480- (∧-congʳ $ ∨-complementˡ _) ⟩
480+ (∧-congˡ $ ∨-complementˡ _) ⟩
481481 ((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧
482482 ((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈˘⟨ lemma₂ _ _ _ _ ⟩
483483 (¬ x ∧ ¬ y) ∨ (x ∧ y) ≈˘⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
@@ -486,12 +486,12 @@ module XorRing
486486
487487 lem₂ = begin
488488 ((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩
489- ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congˡ lem₂' ⟩
489+ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂' ⟩
490490 ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩
491491 ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎
492492
493493 lem₃ = begin
494- x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congʳ $ ∧-congʳ $ deMorgan₁ _ _ ⟩
494+ x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ $ ∧-congˡ $ deMorgan₁ _ _ ⟩
495495 x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩
496496 (x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
497497 ((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎
@@ -503,14 +503,14 @@ module XorRing
503503 ((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧
504504 ((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
505505 ⟨ ∧-cong ⟩
506- (∧-congʳ $ ∨-complementˡ _) ⟩
506+ (∧-congˡ $ ∨-complementˡ _) ⟩
507507 (⊤ ∧ (y ∨ ¬ z)) ∧
508508 ((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
509509 (y ∨ ¬ z) ∧ (¬ y ∨ z) ∎
510510
511511 lem₄ = begin
512512 ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩
513- ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congʳ lem₄' ⟩
513+ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄' ⟩
514514 ¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩
515515 (¬ x ∨ (y ∨ ¬ z)) ∧
516516 (¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
@@ -523,7 +523,7 @@ module XorRing
523523 ((x ∨ ¬ y) ∨ ¬ z) ∧
524524 (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩
525525 (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧
526- ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congˡ $ ∧-comm _ _ ⟩
526+ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩
527527 (((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧
528528 ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩
529529 ((¬ x ∨ ¬ y) ∨ z) ∧
0 commit comments