|
| 1 | +# --- |
| 2 | +# jupyter: |
| 3 | +# jupytext: |
| 4 | +# text_representation: |
| 5 | +# extension: .py |
| 6 | +# format_name: light |
| 7 | +# format_version: '1.5' |
| 8 | +# jupytext_version: 1.14.1 |
| 9 | +# --- |
| 10 | + |
| 11 | +# # Mixed formulation of the Poisson equation solved with BDDC preconditioner # noqa |
| 12 | +# |
| 13 | +# This demo illustrates how to solve the Poisson equation using a mixed |
| 14 | +# (two-field) formulation and a monolithic Balancing Domain Decomposition by |
| 15 | +# Constraits (BDDC) preconditioner for the Krylov solver. For details, see |
| 16 | +# the [paper](https://doi.org/10.1137/16M1080653). For details on the |
| 17 | +# equations, see demo_mixed-poisson.py |
| 18 | +# |
| 19 | +# ```{admonition} Download sources |
| 20 | +# :class: download |
| 21 | +# * {download}`Python script <./demo_mixed-poisson-bddc.py>` |
| 22 | +# * {download}`Jupyter notebook <./demo_mixed-poisson-bddc.ipynb>` |
| 23 | +# ``` |
| 24 | + |
| 25 | +# |
| 26 | +# ## Implementation |
| 27 | +# |
| 28 | +# Import the required modules: |
| 29 | + |
| 30 | +# + |
| 31 | +from mpi4py import MPI |
| 32 | +from petsc4py import PETSc |
| 33 | + |
| 34 | +import numpy as np |
| 35 | + |
| 36 | +import dolfinx |
| 37 | +import ufl |
| 38 | +from basix.ufl import element |
| 39 | +from dolfinx import fem, mesh |
| 40 | +from dolfinx.fem.petsc import discrete_gradient, interpolation_matrix |
| 41 | +from dolfinx.mesh import CellType, create_unit_square, GhostMode |
| 42 | + |
| 43 | +# Solution scalar (e.g., float32, complex128) and geometry (float32/64) |
| 44 | +# types |
| 45 | +dtype = dolfinx.default_scalar_type |
| 46 | +xdtype = dolfinx.default_real_type |
| 47 | +# - |
| 48 | + |
| 49 | +# Create a two-dimensional mesh. The iterative solver supports three- |
| 50 | +# dimensional meshes too. BDDC methods needs the linear operator |
| 51 | +# to be stored in unassembled format, i.e. assembled on each MPI process |
| 52 | +# associated with the subdomain part of the mesh, but not across processes |
| 53 | +# To this end, we require the mesh to not be distributed with overlap |
| 54 | + |
| 55 | +# + |
| 56 | +msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle, ghost_mode=GhostMode.none, dtype=xdtype) |
| 57 | +# - |
| 58 | + |
| 59 | +# From now on, the script is the same as demo_mixed-poisson.py. |
| 60 | + |
| 61 | +# + |
| 62 | +k = 1 |
| 63 | +V = fem.functionspace(msh, element("RT", msh.basix_cell(), k, dtype=xdtype)) |
| 64 | +W = fem.functionspace(msh, element("Discontinuous Lagrange", msh.basix_cell(), k - 1, dtype=xdtype)) |
| 65 | +Q = ufl.MixedFunctionSpace(V, W) |
| 66 | + |
| 67 | +sigma, u = ufl.TrialFunctions(Q) |
| 68 | +tau, v = ufl.TestFunctions(Q) |
| 69 | + |
| 70 | +x = ufl.SpatialCoordinate(msh) |
| 71 | +f = 10 * ufl.exp(-((x[0] - 0.5) * (x[0] - 0.5) + (x[1] - 0.5) * (x[1] - 0.5)) / 0.02) |
| 72 | + |
| 73 | +dx = ufl.Measure("dx", msh) |
| 74 | + |
| 75 | +a = ufl.extract_blocks( |
| 76 | + ufl.inner(sigma, tau) * dx + ufl.inner(u, ufl.div(tau)) * dx + ufl.inner(ufl.div(sigma), v) * dx |
| 77 | +) |
| 78 | +L = [ufl.ZeroBaseForm((tau,)), -ufl.inner(f, v) * dx] |
| 79 | + |
| 80 | +fdim = msh.topology.dim - 1 |
| 81 | +facets_top = mesh.locate_entities_boundary(msh, fdim, lambda x: np.isclose(x[1], 1.0)) |
| 82 | +facets_bottom = mesh.locate_entities_boundary(msh, fdim, lambda x: np.isclose(x[1], 0.0)) |
| 83 | +dofs_top = fem.locate_dofs_topological(V, fdim, facets_top) |
| 84 | +dofs_bottom = fem.locate_dofs_topological(V, fdim, facets_bottom) |
| 85 | + |
| 86 | +cells_top_ = mesh.compute_incident_entities(msh.topology, facets_top, fdim, fdim + 1) |
| 87 | +cells_bottom = mesh.compute_incident_entities(msh.topology, facets_bottom, fdim, fdim + 1) |
| 88 | +g = fem.Function(V, dtype=dtype) |
| 89 | +g.interpolate(lambda x: np.vstack((np.zeros_like(x[0]), np.sin(5 * x[0]))), cells0=cells_top_) |
| 90 | +g.interpolate(lambda x: np.vstack((np.zeros_like(x[0]), -np.sin(5 * x[0]))), cells0=cells_bottom) |
| 91 | +bcs = [fem.dirichletbc(g, dofs_top), fem.dirichletbc(g, dofs_bottom)] |
| 92 | + |
| 93 | +sigma, u = fem.Function(V, name="sigma", dtype=dtype), fem.Function(W, name="u", dtype=dtype) |
| 94 | +# - |
| 95 | + |
| 96 | +# We now create a linear problem solver for the mixed problem. |
| 97 | +# As we will use BDDC, we specify the matrix kind to be "is". |
| 98 | +# We also show a minimal customization for the method to be |
| 99 | +# applied monolithically on the symmetric indefinite linear |
| 100 | +# system arising from the mixed problem. |
| 101 | +# In particular, we need solvers for the subproblems that can |
| 102 | +# support the saddle point formulation. |
| 103 | + |
| 104 | +# + |
| 105 | +if PETSc.Sys().hasExternalPackage("umfpack"): |
| 106 | + solver = "lu" |
| 107 | + solver_type = "umfpack" |
| 108 | +elif PETSc.Sys().hasExternalPackage("mumps"): |
| 109 | + solver = "cholesky" |
| 110 | + solver_type = "mumps" |
| 111 | +elif PETSc.Sys().hasExternalPackage("superlu"): |
| 112 | + solver = "lu" |
| 113 | + solver_type = "superlu" |
| 114 | +elif PETSc.Sys().hasExternalPackage("umfpack"): |
| 115 | + solver = "lu" |
| 116 | + solver_type = "umfpack" |
| 117 | +else: |
| 118 | + solver = "svd" |
| 119 | + solver_type = "dummy" |
| 120 | + |
| 121 | +problem = fem.petsc.LinearProblem( |
| 122 | + a, |
| 123 | + L, |
| 124 | + u=[sigma, u], |
| 125 | + kind="is", |
| 126 | + bcs=bcs, |
| 127 | + petsc_options_prefix="demo_mixed_poisson_", |
| 128 | + petsc_options={ |
| 129 | + "ksp_rtol": 1e-8, |
| 130 | + "ksp_view": None, |
| 131 | + "pc_type": "bddc", |
| 132 | + "pc_bddc_use_local_mat_graph" : False, |
| 133 | + "pc_bddc_benign_trick": None, |
| 134 | + "pc_bddc_nonetflux": None, |
| 135 | + "pc_bddc_detect_disconnected": None, |
| 136 | + "pc_bddc_dirichlet_pc_type": solver, |
| 137 | + "pc_bddc_dirichlet_pc_factor_mat_solver_type": solver_type, |
| 138 | + "pc_bddc_neumann_pc_factor_mat_solver_type": solver_type, |
| 139 | + "pc_bddc_neumann_pc_type": solver, |
| 140 | + "pc_bddc_coarse_redundant_pc_factor_mat_solver_type": solver_type, |
| 141 | + "pc_bddc_coarse_redundant_pc_type": solver, |
| 142 | + }, |
| 143 | +) |
| 144 | +# - |
| 145 | + |
| 146 | +# Solve and save the solution `u` in VTX format: |
| 147 | + |
| 148 | +# + |
| 149 | +ksp = problem.solver |
| 150 | +ksp.setMonitor( |
| 151 | + lambda _, its, rnorm: PETSc.Sys.Print(f"Iteration: {its:>4d}, residual: {rnorm:.3e}") |
| 152 | +) |
| 153 | + |
| 154 | +problem.solve() |
| 155 | +converged_reason = problem.solver.getConvergedReason() |
| 156 | +assert converged_reason > 0, f"Krylov solver has not converged, reason: {converged_reason}." |
| 157 | + |
| 158 | +if dolfinx.has_adios2: |
| 159 | + from dolfinx.io import VTXWriter |
| 160 | + |
| 161 | + u.name = "u" |
| 162 | + with VTXWriter(msh.comm, "output_mixed_poisson_bddc.bp", u, "bp4") as f: |
| 163 | + f.write(0.0) |
| 164 | +else: |
| 165 | + print("ADIOS2 required for VTX output.") |
| 166 | +# - |
0 commit comments